1. A bubble chart from gapminder with an explanation of the economic quantities on the x- and the y-axis. Describe the observed relationship. (A good opportunity to showcase your mastery of terminology, e.g., increasing/decreasing/convex/concave.) 2 An empirical estimate of the rate of change of the

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Help me pls and use the graph above!!!
Part A.
1. A bubble chart from gapminder with an explanation of the economic quantities on the x- and the y-axis.
Describe the observed relationship. (A good opportunity to showcase your mastery of terminology, e.g., increasing/decreasing/convex/concave.)
2. An empirical estimate of the rate of change of the observed relationship.
To do that create a table that shows the x- and y-value for different points. Empirically find the rise over run.
Note: moving your mouse along the graphs and data points on gapminder shows you precise values on the x and y axis.
3. A function (linear, quadratic, logarithmic, exponential, square root, polynomial) that approximately looks like the graph shown in part A.(1), as well as a explanation on why this function
captures the observed relationship.
Make sure your function aligns with the functional values found in A.2.
Note: If the relationship is between log quantities, the function must also depend on the log quantities.
Note: The function should have the same name as the economic quantity on the y-axis. The independent variable should have the same name as the economic quantity on the x-axis. For
example, if you have pollution on the y-axis and income on the x-axis, your function would be P = P(I).
4. The derivative of the formal function you wrote down in A.3. In the example from A.3, you would find the derivative of P with regard to I.
5. The evaluation of the derivative you found in A.4 at the various points corresponding to entries in your table in A.2.
6. A discussion of whether the formal derivative resembles or is similar to the empirical one.
Note: Such a discussion should include aspects that are similar (and why and in what way), as well as aspects that are different (and why and in what way.)
Transcribed Image Text:Part A. 1. A bubble chart from gapminder with an explanation of the economic quantities on the x- and the y-axis. Describe the observed relationship. (A good opportunity to showcase your mastery of terminology, e.g., increasing/decreasing/convex/concave.) 2. An empirical estimate of the rate of change of the observed relationship. To do that create a table that shows the x- and y-value for different points. Empirically find the rise over run. Note: moving your mouse along the graphs and data points on gapminder shows you precise values on the x and y axis. 3. A function (linear, quadratic, logarithmic, exponential, square root, polynomial) that approximately looks like the graph shown in part A.(1), as well as a explanation on why this function captures the observed relationship. Make sure your function aligns with the functional values found in A.2. Note: If the relationship is between log quantities, the function must also depend on the log quantities. Note: The function should have the same name as the economic quantity on the y-axis. The independent variable should have the same name as the economic quantity on the x-axis. For example, if you have pollution on the y-axis and income on the x-axis, your function would be P = P(I). 4. The derivative of the formal function you wrote down in A.3. In the example from A.3, you would find the derivative of P with regard to I. 5. The evaluation of the derivative you found in A.4 at the various points corresponding to entries in your table in A.2. 6. A discussion of whether the formal derivative resembles or is similar to the empirical one. Note: Such a discussion should include aspects that are similar (and why and in what way), as well as aspects that are different (and why and in what way.)
Y Axis
6
5
3
2
Sample Bubble Chart
2
3
X Axis
เก
5
Category
A
B
C
●
●
Bubble Size
5
-10
15
20
25
Transcribed Image Text:Y Axis 6 5 3 2 Sample Bubble Chart 2 3 X Axis เก 5 Category A B C ● ● Bubble Size 5 -10 15 20 25
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman