1 X x2 – a 2 dx

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

Use Trig Substitution. 

*Note, don't forget that, x- ameans that x=asectheta.

 

### Integral of Rational Functions Involving Quadratic Terms

The image depicts the integral:
\[ \int \frac{1}{x^2 - a^2} \, dx \]

To solve this integral, we can use partial fraction decomposition and recognize that the integrand represents a function that can be broken down into simpler rational functions. Here’s the step-by-step process:

#### Step 1: Factor the Denominator
The integrand \(\frac{1}{x^2 - a^2}\) can be factored using the difference of squares:
\[ x^2 - a^2 = (x - a)(x + a) \]

So, we rewrite the integral as:
\[ \int \frac{1}{(x - a)(x + a)} \, dx \]

#### Step 2: Partial Fraction Decomposition
We express \(\frac{1}{(x - a)(x + a)}\) as a sum of partial fractions:
\[ \frac{1}{(x - a)(x + a)} = \frac{A}{x - a} + \frac{B}{x + a} \]

To determine \(A\) and \(B\), we will solve the equation:
\[ 1 = A(x + a) + B(x - a) \]

Setting \(x = a\) to solve for \(B\):
\[ 1 = A(a + a) + B(a - a) \]
\[ 1 = 2aA \]
\[ A = \frac{1}{2a} \]

Setting \(x = -a\) to solve for \(A\):
\[ 1 = A(-a + a) + B(-a - a) \]
\[ 1 = -2aB \]
\[ B = -\frac{1}{2a} \]

So, we have:
\[ \frac{1}{(x - a)(x + a)} = \frac{1}{2a} \cdot \frac{1}{x - a} - \frac{1}{2a} \cdot \frac{1}{x + a} \]

#### Step 3: Rewrite the Integral Using Partial Fractions
Now we can rewrite the integral:
\[ \int \frac{1}{(x - a)(x + a)} \, dx = \int \left( \frac{1}{2a
Transcribed Image Text:### Integral of Rational Functions Involving Quadratic Terms The image depicts the integral: \[ \int \frac{1}{x^2 - a^2} \, dx \] To solve this integral, we can use partial fraction decomposition and recognize that the integrand represents a function that can be broken down into simpler rational functions. Here’s the step-by-step process: #### Step 1: Factor the Denominator The integrand \(\frac{1}{x^2 - a^2}\) can be factored using the difference of squares: \[ x^2 - a^2 = (x - a)(x + a) \] So, we rewrite the integral as: \[ \int \frac{1}{(x - a)(x + a)} \, dx \] #### Step 2: Partial Fraction Decomposition We express \(\frac{1}{(x - a)(x + a)}\) as a sum of partial fractions: \[ \frac{1}{(x - a)(x + a)} = \frac{A}{x - a} + \frac{B}{x + a} \] To determine \(A\) and \(B\), we will solve the equation: \[ 1 = A(x + a) + B(x - a) \] Setting \(x = a\) to solve for \(B\): \[ 1 = A(a + a) + B(a - a) \] \[ 1 = 2aA \] \[ A = \frac{1}{2a} \] Setting \(x = -a\) to solve for \(A\): \[ 1 = A(-a + a) + B(-a - a) \] \[ 1 = -2aB \] \[ B = -\frac{1}{2a} \] So, we have: \[ \frac{1}{(x - a)(x + a)} = \frac{1}{2a} \cdot \frac{1}{x - a} - \frac{1}{2a} \cdot \frac{1}{x + a} \] #### Step 3: Rewrite the Integral Using Partial Fractions Now we can rewrite the integral: \[ \int \frac{1}{(x - a)(x + a)} \, dx = \int \left( \frac{1}{2a
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning