Table 11.1 Reduction potentials, pɛº, and log K values for some important redox half-reactions* Reaction E°(V) pɛ° pε log K Ag+ + e = Ag(s) 0.797 13.51 13.51 Al3++3eAl = -1.686 -28.57 -28.57 13.51 -85.71 (s) AsO+2H+ + 2e¯ = AsO3 + H2O 0.156 2.64 -4.36 5.29 HOBr+H+ + 2e¯ = Br¯ + H₂O 1.338 22.68 19.18 45.36 2HOBr+2H+ + 2e¯ = Br2(aq) + 2H2O 1.581 26.80 20.27 53.60 BrO3 + 6H++ 6e¯ = Br¯ + 3H₂O 1.437 24.35 17.35 146.10 CO2(g) +8H++ 8e¯ = CH4(g) + 2H2O 0.170 2.87 -4.13 22.96 6CO2(g) + 24H+ + 24e¯ = glucose + 6H₂O -0.012 -0.20 -7.20 -4.80 CO2(g) + 4H++ 4e¯ = CH2O + H₂O -0.071 -1.20 -8.20 -4.80 CO2(g) + H+ + 2e¯ = HCOO¯ -0.285 -4.83 -8.33 -9.66 CH2O2H+ + 2e¯ = CH3OH 0.236 3.99 -3.01 7.98 CH2O + 4H+ + 4e¯ = CH4(g) + H₂O 0.410 6.94 -0.06 27.76 CH3OH + 2H+ + 2e¯ = CH4(g) + H₂O 0.584 9.88 2.88 19.76 Cl2(aq) + 2e = CI- 1.392 23.60 23.60 47.20 HOCI+ H+ + 2e¯ = Cl¯ + H₂O 1.481 25.10 21.60 50.20 CIO2 + 4H+ + 5e¯ = Cl¯ + 2H2O 1.495 25.33 19.73 126.67 CIO2 + 4H+ + 4e¯ = Cl¯ + 2H2O 1.609 27.27 20.26 109.06 CIO3 + 6H++ 6e¯ = Cl¯ + 3H₂O 1.446 24.50 17.50 147.02 Co³+ + e Co²+ 1.953 33.10 33.10 33.10 Cro+ 8H+ + 3e¯ = Cr³+ + 4H₂O 1.514 25.66 7.00 77.00 Cu²+ + e¯ = Cu+ 0.160 2.72 2.72 2.72 Cu2+ + 2e = Cu 0.339 5.74 5.74 11.48 Fe3+ + e Fe²+ 0.769 13.03 13.03 13.03 Fe²+ + 2e¯ = Fe(s) 2H+ + 2e¯ = H2(g) 2H+ + 2e¯ = H2(aq) 2Hg 2+ + 2e = Hg2+ -0.441 -7.45 -7.45 -14.90 0.000 0.00 0.00 0.00 -0.092 -1.55 -8.55 -3.10 0.908 15.40 15.40 30.79 Hg₁₂+ + e = 2Hg(1) 0.794 13.46 13.46 26.91 MnO +8H+ + 5e¯ = Mn²+ + 4H₂O 1.508 25.56 14.36 127.82 MnO2(s) + 4H+ + 2e¯ = Mn²+ + 2H2O 1.227 20.80 6.80 41.60 Mn 3+ + e¯ = Mn²+ 1.505 25.51 25.51 25.51 Ni²+ + 2e¯ = Ni(s) -0.236 -3.99 -3.99 -7.98 O2(g) + 4H++4e¯ = 2H₂O 1.226 20.78 13.78 83.12 O2(aq) + 4H++4e¯ = 2H₂O 1.268 21.50 14.50 86.00 O2(aq) + 2H+ + 2e¯ = H₂O2(aq) 0.777 13.17 6.17 26.34 H2O2(aq) + 2H+ + 2e¯ = 2H₂O 1.758 29.80 22.80 59.59 Pb+ + 2e Pb2+ 0.845 14.32 14.32 28.64 Pb2+ + 2e Pb -0.126 -2.13 -2.13 -4.27 (s) SO+ 10H+ + 8e¯ = H₂S(aq) + 4H₂O 0.299 5.08 -3.67 40.67 SO +9H++8e = HS¯ + 4H₂O SO+2H+ + 2e¯ = SO3 + H₂O Seo+4H+ + 2e¯ = H₂SeO3 + H₂O 0.248 4.21 -3.67 33.68 0.801 13.58 6.58 27.16 1.071 18.16 4.16 36.32 70 0760 10.00 10.00 1) Using the half reaction data in Table 11.1), write balanced overall reactions for the following redox processes. Calculate the E°, peº and delataGº values for each overall reaction. Indicate whether each reaction is thermodynamically favorable under standard conditions. i) Oxidation of Mn2+ to MnO2(s) using 12(aq) to form I-. ii) Oxidation of Pb(s) to Pb2+ by Zn²+ to form Zn(s). iii) Oxidation of acetate (CH3COO¯) to CO2 by SO4²¯ to form HS¯. 7 ·H+ + e¯ ½-½ >> CH, COO¯ + 1 H₂O E° = 0.075 V
Table 11.1 Reduction potentials, pɛº, and log K values for some important redox half-reactions* Reaction E°(V) pɛ° pε log K Ag+ + e = Ag(s) 0.797 13.51 13.51 Al3++3eAl = -1.686 -28.57 -28.57 13.51 -85.71 (s) AsO+2H+ + 2e¯ = AsO3 + H2O 0.156 2.64 -4.36 5.29 HOBr+H+ + 2e¯ = Br¯ + H₂O 1.338 22.68 19.18 45.36 2HOBr+2H+ + 2e¯ = Br2(aq) + 2H2O 1.581 26.80 20.27 53.60 BrO3 + 6H++ 6e¯ = Br¯ + 3H₂O 1.437 24.35 17.35 146.10 CO2(g) +8H++ 8e¯ = CH4(g) + 2H2O 0.170 2.87 -4.13 22.96 6CO2(g) + 24H+ + 24e¯ = glucose + 6H₂O -0.012 -0.20 -7.20 -4.80 CO2(g) + 4H++ 4e¯ = CH2O + H₂O -0.071 -1.20 -8.20 -4.80 CO2(g) + H+ + 2e¯ = HCOO¯ -0.285 -4.83 -8.33 -9.66 CH2O2H+ + 2e¯ = CH3OH 0.236 3.99 -3.01 7.98 CH2O + 4H+ + 4e¯ = CH4(g) + H₂O 0.410 6.94 -0.06 27.76 CH3OH + 2H+ + 2e¯ = CH4(g) + H₂O 0.584 9.88 2.88 19.76 Cl2(aq) + 2e = CI- 1.392 23.60 23.60 47.20 HOCI+ H+ + 2e¯ = Cl¯ + H₂O 1.481 25.10 21.60 50.20 CIO2 + 4H+ + 5e¯ = Cl¯ + 2H2O 1.495 25.33 19.73 126.67 CIO2 + 4H+ + 4e¯ = Cl¯ + 2H2O 1.609 27.27 20.26 109.06 CIO3 + 6H++ 6e¯ = Cl¯ + 3H₂O 1.446 24.50 17.50 147.02 Co³+ + e Co²+ 1.953 33.10 33.10 33.10 Cro+ 8H+ + 3e¯ = Cr³+ + 4H₂O 1.514 25.66 7.00 77.00 Cu²+ + e¯ = Cu+ 0.160 2.72 2.72 2.72 Cu2+ + 2e = Cu 0.339 5.74 5.74 11.48 Fe3+ + e Fe²+ 0.769 13.03 13.03 13.03 Fe²+ + 2e¯ = Fe(s) 2H+ + 2e¯ = H2(g) 2H+ + 2e¯ = H2(aq) 2Hg 2+ + 2e = Hg2+ -0.441 -7.45 -7.45 -14.90 0.000 0.00 0.00 0.00 -0.092 -1.55 -8.55 -3.10 0.908 15.40 15.40 30.79 Hg₁₂+ + e = 2Hg(1) 0.794 13.46 13.46 26.91 MnO +8H+ + 5e¯ = Mn²+ + 4H₂O 1.508 25.56 14.36 127.82 MnO2(s) + 4H+ + 2e¯ = Mn²+ + 2H2O 1.227 20.80 6.80 41.60 Mn 3+ + e¯ = Mn²+ 1.505 25.51 25.51 25.51 Ni²+ + 2e¯ = Ni(s) -0.236 -3.99 -3.99 -7.98 O2(g) + 4H++4e¯ = 2H₂O 1.226 20.78 13.78 83.12 O2(aq) + 4H++4e¯ = 2H₂O 1.268 21.50 14.50 86.00 O2(aq) + 2H+ + 2e¯ = H₂O2(aq) 0.777 13.17 6.17 26.34 H2O2(aq) + 2H+ + 2e¯ = 2H₂O 1.758 29.80 22.80 59.59 Pb+ + 2e Pb2+ 0.845 14.32 14.32 28.64 Pb2+ + 2e Pb -0.126 -2.13 -2.13 -4.27 (s) SO+ 10H+ + 8e¯ = H₂S(aq) + 4H₂O 0.299 5.08 -3.67 40.67 SO +9H++8e = HS¯ + 4H₂O SO+2H+ + 2e¯ = SO3 + H₂O Seo+4H+ + 2e¯ = H₂SeO3 + H₂O 0.248 4.21 -3.67 33.68 0.801 13.58 6.58 27.16 1.071 18.16 4.16 36.32 70 0760 10.00 10.00 1) Using the half reaction data in Table 11.1), write balanced overall reactions for the following redox processes. Calculate the E°, peº and delataGº values for each overall reaction. Indicate whether each reaction is thermodynamically favorable under standard conditions. i) Oxidation of Mn2+ to MnO2(s) using 12(aq) to form I-. ii) Oxidation of Pb(s) to Pb2+ by Zn²+ to form Zn(s). iii) Oxidation of acetate (CH3COO¯) to CO2 by SO4²¯ to form HS¯. 7 ·H+ + e¯ ½-½ >> CH, COO¯ + 1 H₂O E° = 0.075 V
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
Related questions
Question

Transcribed Image Text:Table 11.1 Reduction potentials, pɛº, and log K values for some important redox
half-reactions*
Reaction
E°(V)
pɛ°
pε
log K
Ag+ + e = Ag(s)
0.797
13.51
13.51
Al3++3eAl
=
-1.686
-28.57 -28.57
13.51
-85.71
(s)
AsO+2H+ + 2e¯ = AsO3 + H2O
0.156
2.64
-4.36
5.29
HOBr+H+ + 2e¯ = Br¯ + H₂O
1.338
22.68
19.18
45.36
2HOBr+2H+ + 2e¯ = Br2(aq) + 2H2O
1.581
26.80
20.27
53.60
BrO3 + 6H++ 6e¯ = Br¯ + 3H₂O
1.437
24.35
17.35
146.10
CO2(g) +8H++ 8e¯ = CH4(g) + 2H2O
0.170
2.87
-4.13
22.96
6CO2(g) + 24H+ + 24e¯ = glucose + 6H₂O
-0.012
-0.20
-7.20
-4.80
CO2(g) + 4H++ 4e¯ = CH2O + H₂O
-0.071
-1.20
-8.20
-4.80
CO2(g) + H+ + 2e¯ = HCOO¯
-0.285
-4.83
-8.33
-9.66
CH2O2H+ + 2e¯ = CH3OH
0.236
3.99
-3.01
7.98
CH2O + 4H+ + 4e¯ = CH4(g) + H₂O
0.410
6.94
-0.06
27.76
CH3OH + 2H+ + 2e¯ = CH4(g) + H₂O
0.584
9.88
2.88
19.76
Cl2(aq) + 2e = CI-
1.392
23.60
23.60
47.20
HOCI+ H+ + 2e¯ = Cl¯ + H₂O
1.481
25.10
21.60
50.20
CIO2 + 4H+ + 5e¯ = Cl¯ + 2H2O
1.495
25.33
19.73
126.67
CIO2 + 4H+ + 4e¯ = Cl¯ + 2H2O
1.609
27.27
20.26
109.06
CIO3 + 6H++ 6e¯ = Cl¯ + 3H₂O
1.446
24.50
17.50
147.02
Co³+ + e Co²+
1.953
33.10
33.10
33.10
Cro+ 8H+ + 3e¯ = Cr³+ + 4H₂O
1.514
25.66
7.00
77.00
Cu²+ + e¯ = Cu+
0.160
2.72
2.72
2.72
Cu2+ + 2e = Cu
0.339
5.74
5.74
11.48
Fe3+ + e
Fe²+
0.769
13.03
13.03
13.03
Fe²+ + 2e¯ = Fe(s)
2H+ + 2e¯ = H2(g)
2H+ + 2e¯ = H2(aq)
2Hg 2+ + 2e = Hg2+
-0.441
-7.45
-7.45
-14.90
0.000
0.00
0.00
0.00
-0.092
-1.55
-8.55
-3.10
0.908
15.40
15.40
30.79
Hg₁₂+ + e = 2Hg(1)
0.794
13.46
13.46
26.91
MnO +8H+ + 5e¯ = Mn²+ + 4H₂O
1.508
25.56
14.36
127.82
MnO2(s) + 4H+ + 2e¯ = Mn²+ + 2H2O
1.227
20.80
6.80
41.60
Mn 3+
+ e¯ = Mn²+
1.505
25.51
25.51
25.51
Ni²+ + 2e¯ = Ni(s)
-0.236
-3.99
-3.99
-7.98
O2(g) + 4H++4e¯ = 2H₂O
1.226
20.78
13.78
83.12
O2(aq) + 4H++4e¯ = 2H₂O
1.268
21.50
14.50
86.00
O2(aq) + 2H+ + 2e¯ = H₂O2(aq)
0.777
13.17
6.17
26.34
H2O2(aq) + 2H+ + 2e¯ = 2H₂O
1.758
29.80
22.80
59.59
Pb+ + 2e
Pb2+
0.845
14.32
14.32
28.64
Pb2+ + 2e Pb
-0.126
-2.13
-2.13
-4.27
(s)
SO+ 10H+ + 8e¯ = H₂S(aq) + 4H₂O
0.299
5.08
-3.67
40.67
SO +9H++8e = HS¯ + 4H₂O
SO+2H+ + 2e¯ = SO3 + H₂O
Seo+4H+ + 2e¯ = H₂SeO3 + H₂O
0.248
4.21
-3.67
33.68
0.801
13.58
6.58
27.16
1.071
18.16
4.16
36.32
70
0760
10.00
10.00

Transcribed Image Text:1) Using the half reaction data in Table 11.1), write balanced overall reactions for the
following redox processes. Calculate the E°, peº and delataGº values for each overall
reaction. Indicate whether each reaction is thermodynamically favorable under standard
conditions.
i) Oxidation of Mn2+ to MnO2(s) using 12(aq) to form I-.
ii) Oxidation of Pb(s) to Pb2+ by Zn²+ to form Zn(s).
iii) Oxidation of acetate (CH3COO¯) to CO2 by SO4²¯ to form HS¯.
7
·H+ + e¯ ½-½
>> CH, COO¯ + 1 H₂O E° = 0.075 V
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps

Recommended textbooks for you

Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education

Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY

Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall

Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education

Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY

Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall


Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning

Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The