1) Use the Substitution Method to find f 12x (3x² + 4) dx . O 20(3x^2+4)^10 +C O 0.2(3x^2+4)^10 +C 0.1(3x^2+4)^10 +C O 10(3x^2+4)^10 +C

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem 1: Substitution Method for Integration**

Use the Substitution Method to find the integral:

\[
\int 12x (3x^2 + 4)^9 \, dx
\]

**Choices:**

- A) \( 20(3x^2 + 4)^{10} + C \)
- B) \( 0.2(3x^2 + 4)^{10} + C \)
- C) \( 0.1(3x^2 + 4)^{10} + C \)
- D) \( 10(3x^2 + 4)^{10} + C \)

**Explanation:**

To solve this integral using substitution, let \( u = 3x^2 + 4 \). Then, differentiate \( u \) with respect to \( x \):

\[ 
\frac{du}{dx} = 6x \implies du = 6x \, dx 
\]

Now substitute into the integral:

Replace \( 12x \, dx \) with \( 2 \, du \) (since \( 12x \, dx = 2(6x \, dx) = 2 \, du \)):

\[
\int 12x (3x^2 + 4)^9 \, dx = \int 2u^9 \, du 
\]

Integrate with respect to \( u \):

\[
\int 2u^9 \, du = \frac{2}{10}u^{10} + C = 0.2u^{10} + C
\]

Finally, substitute back \( u = 3x^2 + 4 \):

\[
0.2(3x^2 + 4)^{10} + C
\]

Thus, the correct answer is choice **B**.
Transcribed Image Text:**Problem 1: Substitution Method for Integration** Use the Substitution Method to find the integral: \[ \int 12x (3x^2 + 4)^9 \, dx \] **Choices:** - A) \( 20(3x^2 + 4)^{10} + C \) - B) \( 0.2(3x^2 + 4)^{10} + C \) - C) \( 0.1(3x^2 + 4)^{10} + C \) - D) \( 10(3x^2 + 4)^{10} + C \) **Explanation:** To solve this integral using substitution, let \( u = 3x^2 + 4 \). Then, differentiate \( u \) with respect to \( x \): \[ \frac{du}{dx} = 6x \implies du = 6x \, dx \] Now substitute into the integral: Replace \( 12x \, dx \) with \( 2 \, du \) (since \( 12x \, dx = 2(6x \, dx) = 2 \, du \)): \[ \int 12x (3x^2 + 4)^9 \, dx = \int 2u^9 \, du \] Integrate with respect to \( u \): \[ \int 2u^9 \, du = \frac{2}{10}u^{10} + C = 0.2u^{10} + C \] Finally, substitute back \( u = 3x^2 + 4 \): \[ 0.2(3x^2 + 4)^{10} + C \] Thus, the correct answer is choice **B**.
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning