(1) The series Ex=1 k4/5 is: 8 (-1) A) conditionally convergent B) absolutely convergent C) divergent D) D.N.E

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

calculus medium, please solve questionnnn 1

Here is the transcribed text from the image for educational use on a website, along with an explanation of any interesting aspects:

---

1. The series \(\sum_{k=1}^{\infty} \frac{(-1)^k}{k^4/5}\) is:
   - A) conditionally convergent
   - B) absolutely convergent
   - C) divergent
   - D) D.N.E (Does Not Exist)

2. The sequence \(\left \{ (1 - \frac{7}{n})^n \right \}_{n=1}^{\infty}\): 
   - A) converges to \(e^7\)
   - B) converges to \(e^{-7}\)
   - C) converges to \(-7\)
   - D) diverges

3. \(\int_{3}^{4} \frac{4}{x^2 + 9} \, dx =\)
   - A) \(\frac{\pi}{4}\)
   - B) \(\frac{\pi}{2}\)
   - C) \(\frac{\pi}{3}\)
   - D) Diverges

4. The interval of convergence of the power series \(\sum_{k=1}^{\infty} \left( \frac{3}{k} \right)^k\) is:
   - A) \([0]\)
   - B) \(_{(-1, \frac{1}{3}}\)
   - C) \((-3, 3)\)
   - D) \((- \infty, \infty)\)

5. The appropriate substitution for \(\int \frac{dx}{ \sqrt{x^2 + 2x + 10} } = \)
   - A) \(x + 1 = 3 \tan (\theta)\)
   - B) \(x = 10 \sin (\theta)\)
   - C) \(x - 1 = 2 \tan (\theta)\)
   - D) \(x - 1 = 3 \tan (\theta)\)

6. \(\int \frac{x}{(x + 2)^2} dx =\)
   - A) \(\frac{3}{x + 3} + \ln | x + 3 | + c\)
   - B) \(\frac{2
Transcribed Image Text:Here is the transcribed text from the image for educational use on a website, along with an explanation of any interesting aspects: --- 1. The series \(\sum_{k=1}^{\infty} \frac{(-1)^k}{k^4/5}\) is: - A) conditionally convergent - B) absolutely convergent - C) divergent - D) D.N.E (Does Not Exist) 2. The sequence \(\left \{ (1 - \frac{7}{n})^n \right \}_{n=1}^{\infty}\): - A) converges to \(e^7\) - B) converges to \(e^{-7}\) - C) converges to \(-7\) - D) diverges 3. \(\int_{3}^{4} \frac{4}{x^2 + 9} \, dx =\) - A) \(\frac{\pi}{4}\) - B) \(\frac{\pi}{2}\) - C) \(\frac{\pi}{3}\) - D) Diverges 4. The interval of convergence of the power series \(\sum_{k=1}^{\infty} \left( \frac{3}{k} \right)^k\) is: - A) \([0]\) - B) \(_{(-1, \frac{1}{3}}\) - C) \((-3, 3)\) - D) \((- \infty, \infty)\) 5. The appropriate substitution for \(\int \frac{dx}{ \sqrt{x^2 + 2x + 10} } = \) - A) \(x + 1 = 3 \tan (\theta)\) - B) \(x = 10 \sin (\theta)\) - C) \(x - 1 = 2 \tan (\theta)\) - D) \(x - 1 = 3 \tan (\theta)\) 6. \(\int \frac{x}{(x + 2)^2} dx =\) - A) \(\frac{3}{x + 3} + \ln | x + 3 | + c\) - B) \(\frac{2
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning