1 +t 2 t 3+ 2t V = te R Define 1+t1 2 - t1 3+ 2t1 1+ t2 2 – t2 3+ 2t2 1+ (ti + t2) 2 (t1 + t2) 3+ 2(tı + t2) - and 1+ ct 2 - ct 1+t 2 t - 3+ 2t 3+ 2ct a. Find the additive identity and additive inverse. b. Show that V is a vector space (does it comply with ALL ten proper space?) Vor

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Vector Space Problem

1. Let 

\[ 
V = \left\{ \begin{bmatrix} 1 + t \\ 2 - t \\ 3 + 2t \end{bmatrix} \mid t \in \mathbb{R} \right\} 
\]

Define 

\[
\begin{bmatrix} 
1 + t_1 \\ 
2 - t_1 \\ 
3 + 2t_1 
\end{bmatrix} 
\oplus 
\begin{bmatrix} 
1 + t_2 \\ 
2 - t_2 \\ 
3 + 2t_2 
\end{bmatrix} 
= 
\begin{bmatrix} 
1 + (t_1 + t_2) \\ 
2 - (t_1 + t_2) \\ 
3 + 2(t_1 + t_2) 
\end{bmatrix} 
\]

and

\[
c \odot 
\begin{bmatrix} 
1 + t \\ 
2 - t \\ 
3 + 2t 
\end{bmatrix} 
= 
\begin{bmatrix} 
1 + ct \\ 
2 - ct \\ 
3 + 2ct 
\end{bmatrix} 
\]

#### Tasks:

a. Find the additive identity and additive inverse.

b. Show that \( V \) is a vector space (does it comply with ALL ten properties of a vector space?).

c. Verify that \( 0 \cdot \mathbf{v} = \mathbf{0} \) for all \(\mathbf{v}\).

d. Can you come up with a vector 
\[
\begin{bmatrix} 
a \\ 
b \\ 
c 
\end{bmatrix} 
\]
that is not in \( V \)? Is this okay?
Transcribed Image Text:### Vector Space Problem 1. Let \[ V = \left\{ \begin{bmatrix} 1 + t \\ 2 - t \\ 3 + 2t \end{bmatrix} \mid t \in \mathbb{R} \right\} \] Define \[ \begin{bmatrix} 1 + t_1 \\ 2 - t_1 \\ 3 + 2t_1 \end{bmatrix} \oplus \begin{bmatrix} 1 + t_2 \\ 2 - t_2 \\ 3 + 2t_2 \end{bmatrix} = \begin{bmatrix} 1 + (t_1 + t_2) \\ 2 - (t_1 + t_2) \\ 3 + 2(t_1 + t_2) \end{bmatrix} \] and \[ c \odot \begin{bmatrix} 1 + t \\ 2 - t \\ 3 + 2t \end{bmatrix} = \begin{bmatrix} 1 + ct \\ 2 - ct \\ 3 + 2ct \end{bmatrix} \] #### Tasks: a. Find the additive identity and additive inverse. b. Show that \( V \) is a vector space (does it comply with ALL ten properties of a vector space?). c. Verify that \( 0 \cdot \mathbf{v} = \mathbf{0} \) for all \(\mathbf{v}\). d. Can you come up with a vector \[ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \] that is not in \( V \)? Is this okay?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 8 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,