1) Rewrite 2ln(x)-3ln(y)+ln(z) as a single logarithm.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Question 1: Logarithmic Expression Simplification**

**Task**: Rewrite \(2\ln(x) - 3\ln(y) + \ln(z)\) as a single logarithm.

**Solution Approach**:

To combine multiple logarithms into a single logarithmic expression, we can use the properties of logarithms:

1. **Power Rule**: \( a\ln(b) = \ln(b^a) \)
2. **Product Rule**: \( \ln(a) + \ln(b) = \ln(a \times b) \)
3. **Quotient Rule**: \( \ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right) \)

**Steps**:
1. Apply the Power Rule:
   - Transform \(2\ln(x)\) to \(\ln(x^2)\)
   - Transform \(-3\ln(y)\) to \(\ln(y^{-3})\)

2. Substitute back into the expression:
   - \(\ln(x^2) + \ln(z) - \ln(y^3)\)

3. Use the Product Rule:
   - Combine \(\ln(x^2)\) and \(\ln(z)\) to get \(\ln(x^2z)\)

4. Apply the Quotient Rule:
   - Subtract \(\ln(y^3)\) from \(\ln(x^2z)\) to get \(\ln\left(\frac{x^2z}{y^3}\right)\)

**Final Expression**:

The expression \(2\ln(x) - 3\ln(y) + \ln(z)\) can be rewritten as a single logarithm:  
\[ \ln\left(\frac{x^2z}{y^3}\right) \]
Transcribed Image Text:**Question 1: Logarithmic Expression Simplification** **Task**: Rewrite \(2\ln(x) - 3\ln(y) + \ln(z)\) as a single logarithm. **Solution Approach**: To combine multiple logarithms into a single logarithmic expression, we can use the properties of logarithms: 1. **Power Rule**: \( a\ln(b) = \ln(b^a) \) 2. **Product Rule**: \( \ln(a) + \ln(b) = \ln(a \times b) \) 3. **Quotient Rule**: \( \ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right) \) **Steps**: 1. Apply the Power Rule: - Transform \(2\ln(x)\) to \(\ln(x^2)\) - Transform \(-3\ln(y)\) to \(\ln(y^{-3})\) 2. Substitute back into the expression: - \(\ln(x^2) + \ln(z) - \ln(y^3)\) 3. Use the Product Rule: - Combine \(\ln(x^2)\) and \(\ln(z)\) to get \(\ln(x^2z)\) 4. Apply the Quotient Rule: - Subtract \(\ln(y^3)\) from \(\ln(x^2z)\) to get \(\ln\left(\frac{x^2z}{y^3}\right)\) **Final Expression**: The expression \(2\ln(x) - 3\ln(y) + \ln(z)\) can be rewritten as a single logarithm: \[ \ln\left(\frac{x^2z}{y^3}\right) \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning