(1 point) Let V be a vector space, and T :V → Vla linear transformation such that T(2₁ +37₂ ) = −5₁ +37₂ and T(3√₁ +5√₂) = −2v₁ + 5√₂. Then T(V₁) = V₁ + T(V₂) = T(-2v₁ - 4√₂) = V₁ + 1> V₁+ انچه

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

question 1 

(1 point) Let V| be a vector space, and T : V → Va linear transformation such that T(2ỷ₁ + 3√₂) = −5ỷ₁ + 3√₂|and T(3√₁ +5√₂ ) = −2v₁ + 5√₂|. Then
T(V₁) =
V₁ +
T(V₂) =
T(-2v₁ - 4√₂) =
v₁ +
V₁ +
پیچه
V₂.
TAN
Transcribed Image Text:(1 point) Let V| be a vector space, and T : V → Va linear transformation such that T(2ỷ₁ + 3√₂) = −5ỷ₁ + 3√₂|and T(3√₁ +5√₂ ) = −2v₁ + 5√₂|. Then T(V₁) = V₁ + T(V₂) = T(-2v₁ - 4√₂) = v₁ + V₁ + پیچه V₂. TAN
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,