(1 point) Find the curvature (t) of the curve r(t) = (4 sin t)i + (4 sin t)j + (5 cost) k

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem Statement:**

Find the curvature \(\kappa(t)\) of the curve given by the parametric vector function:

\[
\mathbf{r}(t) = (4 \sin t) \mathbf{i} + (4 \sin t) \mathbf{j} + (5 \cos t) \mathbf{k}
\]

**Instructions:**
You need to calculate the curvature \(\kappa(t)\) of the provided curve using the standard curvature formula for a space curve. 

**Concepts Covered:**

- Curvature of a space curve
- Parametric equations
- Vector calculus

**Relevant Formula:**

The curvature \(\kappa(t)\) of a curve defined by the vector function \(\mathbf{r}(t)\) is given by:

\[
\kappa(t) = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}
\]

Where:
- \(\mathbf{r}'(t)\) is the first derivative of \(\mathbf{r}(t)\)
- \(\mathbf{r}''(t)\) is the second derivative of \(\mathbf{r}(t)\)
- \(\times\) denotes the cross product

Through this problem, you will apply differentiation and vector operations to find the curvature.

**Solution Approach:**

1. Differentiate \(\mathbf{r}(t)\) to find \(\mathbf{r}'(t)\).
2. Differentiate \(\mathbf{r}'(t)\) to find \(\mathbf{r}''(t)\).
3. Calculate the cross product \(\mathbf{r}'(t) \times \mathbf{r}''(t)\).
4. Find the magnitudes \(|\mathbf{r}'(t)|\) and \(|\mathbf{r}'(t) \times \mathbf{r}''(t)|\).
5. Substitute these in the curvature formula to find \(\kappa(t)\).

By solving this, you will enhance your understanding of curvature and vector operations in three-dimensional space.
Transcribed Image Text:**Problem Statement:** Find the curvature \(\kappa(t)\) of the curve given by the parametric vector function: \[ \mathbf{r}(t) = (4 \sin t) \mathbf{i} + (4 \sin t) \mathbf{j} + (5 \cos t) \mathbf{k} \] **Instructions:** You need to calculate the curvature \(\kappa(t)\) of the provided curve using the standard curvature formula for a space curve. **Concepts Covered:** - Curvature of a space curve - Parametric equations - Vector calculus **Relevant Formula:** The curvature \(\kappa(t)\) of a curve defined by the vector function \(\mathbf{r}(t)\) is given by: \[ \kappa(t) = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3} \] Where: - \(\mathbf{r}'(t)\) is the first derivative of \(\mathbf{r}(t)\) - \(\mathbf{r}''(t)\) is the second derivative of \(\mathbf{r}(t)\) - \(\times\) denotes the cross product Through this problem, you will apply differentiation and vector operations to find the curvature. **Solution Approach:** 1. Differentiate \(\mathbf{r}(t)\) to find \(\mathbf{r}'(t)\). 2. Differentiate \(\mathbf{r}'(t)\) to find \(\mathbf{r}''(t)\). 3. Calculate the cross product \(\mathbf{r}'(t) \times \mathbf{r}''(t)\). 4. Find the magnitudes \(|\mathbf{r}'(t)|\) and \(|\mathbf{r}'(t) \times \mathbf{r}''(t)|\). 5. Substitute these in the curvature formula to find \(\kappa(t)\). By solving this, you will enhance your understanding of curvature and vector operations in three-dimensional space.
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning