1) Let z = 2+i be a point on a curve C. The direction of the tangent vector to C at z = 2+i is rotated through an angle θ under the action of the transformation  f(z) =36z2+12z  on C. Then the value of tan θ is. 2) The image of the line y = 5x under the mapping w = z2 is a straight line L. Then the slope of L is 3)A non-zero fixed point of the mapping w = 14z/(11z+2) is 4) If u(x,y) = 2x+3xy+c is the real part of an analytic function f(z), then the derivative of f at 5i, f'(5i) =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

1) Let z = 2+i be a point on a curve C. The direction of the tangent vector to at z = 2+i is rotated through an angle θ under the action of the transformation  f(z) =36z2+12z  on C. Then the value of tan θ is.

2) The image of the line y = 5x under the mapping w = z2 is a straight line L. Then the slope of L is

3)A non-zero fixed point of the mapping w = 14z/(11z+2) is

4) If u(x,y) = 2x+3xy+c is the real part of an analytic function f(z), then the derivative of f at 5i, f'(5i)

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,