1) Let A and B be two sets. (a) Show that (A^c ∩ B^c)^c = A ∪ B and (A^c ∪ B^c)^c = A ∩ B. (b) Consider rolling a six-sided die once. Let A be the set of outcomes where an odd number comes up. Let B be the set of outcomes where a 1 or a 2 comes up. Calculate the sets on both sides of the equalities in part (a), and verify that the equalities hold.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

1)

Let A and B be two sets.
(a) Show that (A^c ∩ B^c)^c = A ∪ B and (A^c ∪ B^c)^c = A ∩ B.
(b) Consider rolling a six-sided die once. Let A be the set of outcomes where an odd number comes up. Let B be the set of outcomes where a 1 or a 2 comes up. Calculate the sets on both sides of the equalities in part (a), and verify that the equalities hold.

2)Let A and B be two sets with a finite number of elements. Show that the number of elements in A ∩ B plus the number of elements in A ∪ B is equal to the number of elements in A plus the number of elements in B.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,