1 kg of steam at 20 bar, dryness fraction 0.9, is heated reversibly at constant pressure to a temperature of 300 C. Calculate the heat supplied, and the change of entropy, and show the process on a T-s diagram, indicating the area which represents the heat flow. (415 kJ/kg: 0.8173 kJ/kg K) 4.1 4.2 Steam at 0.05 bar, 100°C is to be condensed completely by a reversible constant pressure process. Calculate the heat rejected per kilogram of steam, and the change of specific entropy. Sketch the process on a T-s diagram and shade in the area which represents the heat flow. (2550 kJ/kg; 8.292 kJ/kg K) 4.3 0.05 kg of steam at 10 bar, dryness fraction 0.84, is heated reversibly in a rigid vessel until the pressure is 20 bar. Calculate the change of entropy and the heat supplied. Show the area which represents the heat supplied on a T-s diagram. (0.0704 kJ/kg K; 36.85 kJ) 4.4 A rigid cylinder containing 0.006 m' of nitrogen (molar mass 28 kg/kmol) at 1.04 bar, 15°C, is heated reversibly until the temperature is 90°C. Calculate the change of entropy and the heat supplied. Sketch the process on a T-s diagram. Take the isentropic index, v for nitrooen as 14 and assume that nitrogen is a neríect gas
1 kg of steam at 20 bar, dryness fraction 0.9, is heated reversibly at constant pressure to a temperature of 300 C. Calculate the heat supplied, and the change of entropy, and show the process on a T-s diagram, indicating the area which represents the heat flow. (415 kJ/kg: 0.8173 kJ/kg K) 4.1 4.2 Steam at 0.05 bar, 100°C is to be condensed completely by a reversible constant pressure process. Calculate the heat rejected per kilogram of steam, and the change of specific entropy. Sketch the process on a T-s diagram and shade in the area which represents the heat flow. (2550 kJ/kg; 8.292 kJ/kg K) 4.3 0.05 kg of steam at 10 bar, dryness fraction 0.84, is heated reversibly in a rigid vessel until the pressure is 20 bar. Calculate the change of entropy and the heat supplied. Show the area which represents the heat supplied on a T-s diagram. (0.0704 kJ/kg K; 36.85 kJ) 4.4 A rigid cylinder containing 0.006 m' of nitrogen (molar mass 28 kg/kmol) at 1.04 bar, 15°C, is heated reversibly until the temperature is 90°C. Calculate the change of entropy and the heat supplied. Sketch the process on a T-s diagram. Take the isentropic index, v for nitrooen as 14 and assume that nitrogen is a neríect gas
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The