(1) In an ammonia refrigeration system, the capacity is 210 kW at a temperature of-20°C. The vapor from the evaporator is pumped by one compressor to the condensing pressure of 1431 kPa. Later, the system was revised to a two-stage compression operating on the cycle shown below with intercooling but no removal of flash at 555 kPa. (a) in the original system. (b) compressors in the revised system. Calculate the power required by the single compressor Calculate the total power required by the two-

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Solve the following problems:
Note: Draw the p-h diagram completely labeling the respective refrigerant conditions (pressures and
temperatures) and define the properties of refrigerant (enthalpies and specific volume) needed
to solve the respective problems.
In an ammonia refrigeration system, the capacity is
(1)
210 kW at a temperature of-20°C. The vapor from the evaporator
is pumped by one compressor to the condensing pressure of 1431
kPa. Later, the system was revised to a two-stage compression
operating on the cycle shown below with intercooling but no
removal of flash at 555 kPa.
(а)
Calculate the power required by the single compressor
in the original system.
(b)
Calculate the total power required by the two
compressors in the revised system.
Condenser
1431kPa
High-stage
compressor
Intercooler
555kPa
Evaporator
2í0kW
-20°C
Low-stage
compresaor
Transcribed Image Text:Solve the following problems: Note: Draw the p-h diagram completely labeling the respective refrigerant conditions (pressures and temperatures) and define the properties of refrigerant (enthalpies and specific volume) needed to solve the respective problems. In an ammonia refrigeration system, the capacity is (1) 210 kW at a temperature of-20°C. The vapor from the evaporator is pumped by one compressor to the condensing pressure of 1431 kPa. Later, the system was revised to a two-stage compression operating on the cycle shown below with intercooling but no removal of flash at 555 kPa. (а) Calculate the power required by the single compressor in the original system. (b) Calculate the total power required by the two compressors in the revised system. Condenser 1431kPa High-stage compressor Intercooler 555kPa Evaporator 2í0kW -20°C Low-stage compresaor
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY