1- If z = 1+ y2, we can write: a) z = 1- (iy)?, b) z = 1- iy?, c) z = 1- iy, d) z 1 + (iy)? 2- If z, = 1+i and zz = i then 4 equal: a) 1 + 1, b) -1+ 1, c) -1 - i, d) 1 -i 3- If z = x+ iy, 2 = x- ly, then zz equal: a) Vx? + y?, b) x - y, c) x? + y*, d) x? + iy?

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question
1- If z = 1+ y2, we can write:
a) z = 1- (iy)?, b) z = 1- iy?, c) z = 1- iy, d) z = 1 + (iy)?
2- If z1 = 1+i and z2 = i* then equal:
b) -1+ i,
%3D
a) 1+i,
с) -1- і,
d) 1-i
3- If z = x + iy, z = x- iy, then zz equal:
a) Vr + y7, b) x² - y',
c) x? + y?,
d) x? + iy?
4- Im(iz) equal:
a) Re(z)
c) -Re(2)
b) Im(z)
d) -ilm(iz)
5- arg () equal :-
a) - arg(7),
b) arg (z),
c) arg (-7), d)-arg(z)
Q2) Find(1 + iv3 )(i + v3)
Q3| If a + ib
(ix+1)2
find a? + b?
x+1
Q4) By using polynomial equation, find (1 + i)? and (i + 1)3
Q5| Find the complex number z if arg(z – 1) = and arg(z) = *
%3D
Transcribed Image Text:1- If z = 1+ y2, we can write: a) z = 1- (iy)?, b) z = 1- iy?, c) z = 1- iy, d) z = 1 + (iy)? 2- If z1 = 1+i and z2 = i* then equal: b) -1+ i, %3D a) 1+i, с) -1- і, d) 1-i 3- If z = x + iy, z = x- iy, then zz equal: a) Vr + y7, b) x² - y', c) x? + y?, d) x? + iy? 4- Im(iz) equal: a) Re(z) c) -Re(2) b) Im(z) d) -ilm(iz) 5- arg () equal :- a) - arg(7), b) arg (z), c) arg (-7), d)-arg(z) Q2) Find(1 + iv3 )(i + v3) Q3| If a + ib (ix+1)2 find a? + b? x+1 Q4) By using polynomial equation, find (1 + i)? and (i + 1)3 Q5| Find the complex number z if arg(z – 1) = and arg(z) = * %3D
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Quadrilaterals
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,