1 If f(x) = compute f(2) and f'(2)

College Algebra
7th Edition
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:James Stewart, Lothar Redlin, Saleem Watson
Chapter4: Exponential And Logarithmic Functions
Section: Chapter Questions
Problem 3CC: If xis large, which function grows faster, f(x)=2x or g(x)=x2?
icon
Related questions
Question
**Problem Statement:**

Given the function:
\[ f(x) = \frac{1}{x^3} \]

**Tasks:**
1. Compute \( f(2) \).
2. Compute the derivative \( f'(x) \) and evaluate it at \( x = 2 \), i.e., find \( f'(2) \).

**Solution:**

1. **Computing \( f(2) \)**:
\[ f(2) = \frac{1}{2^3} = \frac{1}{8} \]

2. **Finding the derivative \( f'(x) \)**:
\[ f(x) = x^{-3} \]
Using the power rule for differentiation:
\[ f'(x) = -3x^{-4} = -\frac{3}{x^4} \]

**Evaluate \( f'(2) \)**:
\[ f'(2) = -\frac{3}{2^4} = -\frac{3}{16} \]

**Answers:**
- \( f(2) = \frac{1}{8} \)
- \( f'(2) = -\frac{3}{16} \)
Transcribed Image Text:**Problem Statement:** Given the function: \[ f(x) = \frac{1}{x^3} \] **Tasks:** 1. Compute \( f(2) \). 2. Compute the derivative \( f'(x) \) and evaluate it at \( x = 2 \), i.e., find \( f'(2) \). **Solution:** 1. **Computing \( f(2) \)**: \[ f(2) = \frac{1}{2^3} = \frac{1}{8} \] 2. **Finding the derivative \( f'(x) \)**: \[ f(x) = x^{-3} \] Using the power rule for differentiation: \[ f'(x) = -3x^{-4} = -\frac{3}{x^4} \] **Evaluate \( f'(2) \)**: \[ f'(2) = -\frac{3}{2^4} = -\frac{3}{16} \] **Answers:** - \( f(2) = \frac{1}{8} \) - \( f'(2) = -\frac{3}{16} \)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer