1-Find the cosine of the angle between A and B with respect to the standard inner product on M22 2 4 A = (-²₁₂3) B = (-3² ₂) 1 4 2 2-Let A, B E M .Determine whether if the function = tr(AB) defines an inner product on Mn?
1-Find the cosine of the angle between A and B with respect to the standard inner product on M22 2 4 A = (-²₁₂3) B = (-3² ₂) 1 4 2 2-Let A, B E M .Determine whether if the function = tr(AB) defines an inner product on Mn?
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Do q2 only plz
![1. Find the cosine of the angle between \( A \) and \( B \) with respect to the standard inner product on \( M_{22} \).
\[
A = \begin{pmatrix} 2 & 4 \\ -1 & 3 \end{pmatrix} \quad B = \begin{pmatrix} -3 & 1 \\ 4 & 2 \end{pmatrix}
\]
2. Let \( A, B \in M_{nn} \). Determine whether the function
\[
\langle A, B \rangle = \text{tr}(AB)
\]
defines an inner product on \( M_{nn} \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4b2b9d69-854a-4c26-a639-4c378ed4e00f%2Fa51f5590-3de3-495f-a914-0a28cd03cb33%2Ff18q47r_processed.jpeg&w=3840&q=75)
Transcribed Image Text:1. Find the cosine of the angle between \( A \) and \( B \) with respect to the standard inner product on \( M_{22} \).
\[
A = \begin{pmatrix} 2 & 4 \\ -1 & 3 \end{pmatrix} \quad B = \begin{pmatrix} -3 & 1 \\ 4 & 2 \end{pmatrix}
\]
2. Let \( A, B \in M_{nn} \). Determine whether the function
\[
\langle A, B \rangle = \text{tr}(AB)
\]
defines an inner product on \( M_{nn} \).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)