-1 Find a fundamental matrix of the following system, and then apply x(t) = (t)(0) xo to find a solution satisfying the initial conditions. 5 -6 0 x= 4 -1 40 - 4 x, x(0)= 8 -2-8 2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Solving Systems of Differential Equations**

To find a fundamental matrix of the given system and apply \( x(t) = \Phi(t)\Phi(0)^{-1} x_0 \) to find a solution that satisfies the initial conditions, follow the steps below:

Given the system of differential equations:

\[ x' = A x, \quad A = \begin{bmatrix}
5 & -6 & 0 \\ 
4 & -1 & -4 \\ 
8 & -2 & -8
\end{bmatrix}, \quad x(0) = \begin{bmatrix}
2 \\ 
1 \\ 
0
\end{bmatrix} \]

### Step 1: Compute the Fundamental Matrix, Φ(t)
You are provided with two options for the fundamental matrix:

**Option C:**
\[ \Phi(t) = \begin{bmatrix}
20 e^{3t} & 2e^{-7t} & 4 e^{-7t} \\ 
19 e^{3t} & 2 e^{3t} & 4 e^{-7t}
\end{bmatrix} \]

**Option D:**
\[ \Phi(t) = \begin{bmatrix}
2t e^{3t} & 24 e^{3t} & 20 e^{-7t} \\ 
19t e^{3t} & 4 e^{3t} & \ 2e^{-7t}
\end{bmatrix} \]

### Step 2: Select the Correct Fundamental Matrix
The correct fundamental matrix needs to be determined by checking against the initial conditions. 

### Step 3: Apply Solution Formula
Once the correct fundamental matrix is chosen, apply \( x(t) = \Phi(t) \Phi(0)^{-1} x_0 \). 

### Step 4: Find Solution Satisfying the Initial Condition
Solve for \( x(t) \) given \( \Phi(t) \), \( x_0 \), and \( \Phi(0)^{-1} \).

**Example Calculation:**

First, find \( \Phi(0) \) and then compute its inverse \( \Phi(0)^{-1} \).

Let's assume \( \Phi(0) \) is derived from \( \Phi(t) \) when \( t=0 \):
- If \( \Phi(t) \) is chosen from **Option C
Transcribed Image Text:**Solving Systems of Differential Equations** To find a fundamental matrix of the given system and apply \( x(t) = \Phi(t)\Phi(0)^{-1} x_0 \) to find a solution that satisfies the initial conditions, follow the steps below: Given the system of differential equations: \[ x' = A x, \quad A = \begin{bmatrix} 5 & -6 & 0 \\ 4 & -1 & -4 \\ 8 & -2 & -8 \end{bmatrix}, \quad x(0) = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \] ### Step 1: Compute the Fundamental Matrix, Φ(t) You are provided with two options for the fundamental matrix: **Option C:** \[ \Phi(t) = \begin{bmatrix} 20 e^{3t} & 2e^{-7t} & 4 e^{-7t} \\ 19 e^{3t} & 2 e^{3t} & 4 e^{-7t} \end{bmatrix} \] **Option D:** \[ \Phi(t) = \begin{bmatrix} 2t e^{3t} & 24 e^{3t} & 20 e^{-7t} \\ 19t e^{3t} & 4 e^{3t} & \ 2e^{-7t} \end{bmatrix} \] ### Step 2: Select the Correct Fundamental Matrix The correct fundamental matrix needs to be determined by checking against the initial conditions. ### Step 3: Apply Solution Formula Once the correct fundamental matrix is chosen, apply \( x(t) = \Phi(t) \Phi(0)^{-1} x_0 \). ### Step 4: Find Solution Satisfying the Initial Condition Solve for \( x(t) \) given \( \Phi(t) \), \( x_0 \), and \( \Phi(0)^{-1} \). **Example Calculation:** First, find \( \Phi(0) \) and then compute its inverse \( \Phi(0)^{-1} \). Let's assume \( \Phi(0) \) is derived from \( \Phi(t) \) when \( t=0 \): - If \( \Phi(t) \) is chosen from **Option C
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,