1) Determine if the vector b can be written as a linear combination of the vectors a₁, az, and al 1 2. [] 1 93 허

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem 1:** Determine if the vector **b** can be written as a linear combination of the vectors **a₁**, **a₂**, and **a₃**.

Vectors:

\[
\vec{a_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad
\vec{a_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad
\vec{a_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad
\vec{b} = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}
\]

**Explanation:**

The question asks whether the vector **b** can be expressed as a linear combination of **a₁**, **a₂**, and **a₃**. This means we need to determine if there exist scalars **x₁**, **x₂**, and **x₃** such that:

\[
\vec{b} = x_1\vec{a_1} + x_2\vec{a_2} + x_3\vec{a_3}
\]

Substituting the vectors into the equation, we have:

\[
\begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
\]

This can be expanded to the following system of equations:

1. \( x_1 = 2 \)
2. \( x_2 = -1 \)
3. \( x_3 = 2 \)

These equations clearly show that each component of **b** can be achieved by adjusting the coefficients of **a₁**, **a₂**, and **a₃**, indicating that **b** can indeed be expressed as a linear combination of these vectors.
Transcribed Image Text:**Problem 1:** Determine if the vector **b** can be written as a linear combination of the vectors **a₁**, **a₂**, and **a₃**. Vectors: \[ \vec{a_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \vec{a_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \vec{a_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix} \] **Explanation:** The question asks whether the vector **b** can be expressed as a linear combination of **a₁**, **a₂**, and **a₃**. This means we need to determine if there exist scalars **x₁**, **x₂**, and **x₃** such that: \[ \vec{b} = x_1\vec{a_1} + x_2\vec{a_2} + x_3\vec{a_3} \] Substituting the vectors into the equation, we have: \[ \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \] This can be expanded to the following system of equations: 1. \( x_1 = 2 \) 2. \( x_2 = -1 \) 3. \( x_3 = 2 \) These equations clearly show that each component of **b** can be achieved by adjusting the coefficients of **a₁**, **a₂**, and **a₃**, indicating that **b** can indeed be expressed as a linear combination of these vectors.
Expert Solution
Step 1: Given

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,