-1 d) p(x)=√√4x³-7 e) g(x)=x42³x-1 f) p(0) = sin² (40)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

2(3)

Instructions: Please make sure to show your work & calculations step by step. I really need help with this pleasee! I need a new expert answer.

 

 

Determines the derivative of each of the functions. (d,e,f)

d) p(x)=-
-1
34x³-7
e) g(x)=x42³x-1
f) p(0) = sin² (40)
Transcribed Image Text:d) p(x)=- -1 34x³-7 e) g(x)=x42³x-1 f) p(0) = sin² (40)
Step1
a)
Derivative of functions.
d). p(x)=
dp
dx.
Step
b)
50,
so,
=
dg
dx
dg
dx
dp
-1
3√4x³-7
dx
(-1) (-1/3) (4x³-7)
4x.
(4x³-7)
2
=
4/3
ملاقے
DIDNT HELP ME AT ALL
g(x) = x + 2
२
2 { 4 x ³² 2²
--
جسم
THIS EXPERT'S ANSWER
3X-1
3x
3x
+
3x+1
-4/3/4
3/8
(4x³-7)
11
- 108.
G
+
3x
mor
+ 3 2
3 (tax²)
x
- 1/3
2
3x-1
3X
-2
log 2
نیا هم
logd. (3)}
X
log 2 x
4
Transcribed Image Text:Step1 a) Derivative of functions. d). p(x)= dp dx. Step b) 50, so, = dg dx dg dx dp -1 3√4x³-7 dx (-1) (-1/3) (4x³-7) 4x. (4x³-7) 2 = 4/3 ملاقے DIDNT HELP ME AT ALL g(x) = x + 2 २ 2 { 4 x ³² 2² -- جسم THIS EXPERT'S ANSWER 3X-1 3x 3x + 3x+1 -4/3/4 3/8 (4x³-7) 11 - 108. G + 3x mor + 3 2 3 (tax²) x - 1/3 2 3x-1 3X -2 log 2 نیا هم logd. (3)} X log 2 x 4
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,