(1) Consider the Gamma function I: RR, the Euler Gamma function restricted to real numbers: Show that: T(z) = e-tt-1dt 0 a) For every Є R, we have I (x + 1) = x(x); b) For every n Є N, we have I (n + 1) = n!, in particular F(1) = 1; c) F (})=√√T; d) I(-n): = ∞, for every n Є N, in particular I (0) = ∞; e) г(z)г(1 z) = - = sin πz for every z Є C. (2) Knowing that show that (m) k = m! (m-k)!k!! 0, if m > k, if m
(1) Consider the Gamma function I: RR, the Euler Gamma function restricted to real numbers: Show that: T(z) = e-tt-1dt 0 a) For every Є R, we have I (x + 1) = x(x); b) For every n Є N, we have I (n + 1) = n!, in particular F(1) = 1; c) F (})=√√T; d) I(-n): = ∞, for every n Є N, in particular I (0) = ∞; e) г(z)г(1 z) = - = sin πz for every z Є C. (2) Knowing that show that (m) k = m! (m-k)!k!! 0, if m > k, if m
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Gamma Function
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 5 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,