1 57. > Σ (k+6)(k+ 7) k=1

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Question

57.

### Telescoping Series Problems

In the following exercises, you are tasked with finding a formula for the nth term of the sequence of partial sums \(\{S_n\}\) for each telescoping series. After determining the formula, evaluate \(\lim_{n \to \infty} S_n\) to find the series' value or determine if it diverges.

---

#### Decimal Representations

50. \[1.25 = 1.252525\ldots\]

51. \[0.456 = 0.456456456\ldots\]

52. \[5.1283 = 5.12838383\ldots\]

53. \[0.00952 = 0.00952952\ldots\]

---

#### Telescoping Series

54. \[\sum_{k=1}^{\infty} \left( \frac{1}{k+2} - \frac{1}{k+3} \right)\]

55. \[\sum_{k=1}^{\infty} \left( \frac{1}{k+1} - \frac{1}{k+2} \right)\]

56. \[\sum_{k=1}^{\infty} \frac{20}{25k^2 + 15k - 4}\]

57. \[\sum_{k=1}^{8} \frac{1}{(k+6)(k+7)}\]

58. \[\sum_{k=3}^{\infty} \frac{10}{4k^2 + 32k + 63}\]

59. \[\sum_{k=3}^{\infty} \frac{4}{(4k - 3)(4k + 1)}\]

60. \[\sum_{k=0}^{\infty} \frac{1}{(3k+1)(3k+4)}\]

61. \[\sum_{k=1}^{\infty} \ln \frac{k+1}{k}\]

62. \[\sum_{k=3}^{\infty} \frac{2}{(2k-1)(2k+1)}\]

63. \[\sum_{k=1}^{\infty} \frac{1}{(k+p)(k+p+1)}\quad \text{where } p \text
Transcribed Image Text:### Telescoping Series Problems In the following exercises, you are tasked with finding a formula for the nth term of the sequence of partial sums \(\{S_n\}\) for each telescoping series. After determining the formula, evaluate \(\lim_{n \to \infty} S_n\) to find the series' value or determine if it diverges. --- #### Decimal Representations 50. \[1.25 = 1.252525\ldots\] 51. \[0.456 = 0.456456456\ldots\] 52. \[5.1283 = 5.12838383\ldots\] 53. \[0.00952 = 0.00952952\ldots\] --- #### Telescoping Series 54. \[\sum_{k=1}^{\infty} \left( \frac{1}{k+2} - \frac{1}{k+3} \right)\] 55. \[\sum_{k=1}^{\infty} \left( \frac{1}{k+1} - \frac{1}{k+2} \right)\] 56. \[\sum_{k=1}^{\infty} \frac{20}{25k^2 + 15k - 4}\] 57. \[\sum_{k=1}^{8} \frac{1}{(k+6)(k+7)}\] 58. \[\sum_{k=3}^{\infty} \frac{10}{4k^2 + 32k + 63}\] 59. \[\sum_{k=3}^{\infty} \frac{4}{(4k - 3)(4k + 1)}\] 60. \[\sum_{k=0}^{\infty} \frac{1}{(3k+1)(3k+4)}\] 61. \[\sum_{k=1}^{\infty} \ln \frac{k+1}{k}\] 62. \[\sum_{k=3}^{\infty} \frac{2}{(2k-1)(2k+1)}\] 63. \[\sum_{k=1}^{\infty} \frac{1}{(k+p)(k+p+1)}\quad \text{where } p \text
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning