1-40 A hair dryer is basically a duct in which a few layers of electric resistors are placed. A small fan pulls the air in and forces it to flow over the resistors where it is heated. Air enters a 1200-W hair dryer at 100 kPa and 22°C, and leaves at 47°C. The cross-sectional area of the hair dryer at the exit is 60 cm². Neglecting the power consumed by the fan and the heat losses through the walls of the hair dryer, determine (a) the volume flow rate of air at the inlet and (b) the velocity of the air at the exit. Answers: (a) 0.0404 m³/s, (b) 7.30 m/s

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
1-40 A hair dryer is basically a duct in which a few layers of
electric resistors are placed. A small fan pulls the air in and
forces it to flow over the resistors where it is heated. Air enters
a 1200-W hair dryer at 100 kPa and 22°C, and leaves at 47°C℃.
The cross-sectional area of the hair dryer at the exit is 60 cm².
Neglecting the power consumed by the fan and the heat losses
through the walls of the hair dryer, determine (a) the volume
flow rate of air at the inlet and (b) the velocity of the air at the
exit. Answers: (a) 0.0404 m³/s, (b) 7.30 m/s
T₂ = 47°C
A₂ = 60 cm²
Ker pa bi
W = 1200 W
P₁ = 100 kPa
T₁ = 22°C
Transcribed Image Text:1-40 A hair dryer is basically a duct in which a few layers of electric resistors are placed. A small fan pulls the air in and forces it to flow over the resistors where it is heated. Air enters a 1200-W hair dryer at 100 kPa and 22°C, and leaves at 47°C℃. The cross-sectional area of the hair dryer at the exit is 60 cm². Neglecting the power consumed by the fan and the heat losses through the walls of the hair dryer, determine (a) the volume flow rate of air at the inlet and (b) the velocity of the air at the exit. Answers: (a) 0.0404 m³/s, (b) 7.30 m/s T₂ = 47°C A₂ = 60 cm² Ker pa bi W = 1200 W P₁ = 100 kPa T₁ = 22°C
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY