1 3. If sin x = and is in quadrant I, use the double-angle identities to find sin (2x), cos (2x), and tan (2x). (Hint: find cos x and tan x first.)

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
**Problem 3:**

Given that \(\sin x = \frac{1}{8}\) and \(x\) is in quadrant I, use the double-angle identities to find \(\sin(2x)\), \(\cos(2x)\), and \(\tan(2x)\).

*(Hint: find \(\cos x\) and \(\tan x\) first.)*

**Solution Approach:**

1. **Use Pythagorean Identity:**
   \[
   \sin^2 x + \cos^2 x = 1
   \]
   Substitute \(\sin x = \frac{1}{8}\):
   \[
   \left(\frac{1}{8}\right)^2 + \cos^2 x = 1 \implies \frac{1}{64} + \cos^2 x = 1
   \]
   \[
   \cos^2 x = 1 - \frac{1}{64} = \frac{63}{64}
   \]
   Since \(x\) is in quadrant I:
   \[
   \cos x = \frac{\sqrt{63}}{8}
   \]

2. **Find \(\sin(2x)\) using double-angle identity:**
   \[
   \sin(2x) = 2 \sin x \cos x
   \]
   \[
   \sin(2x) = 2 \left(\frac{1}{8}\right) \left(\frac{\sqrt{63}}{8}\right) = \frac{\sqrt{63}}{32}
   \]

3. **Find \(\cos(2x)\) using double-angle identity:**
   \[
   \cos(2x) = \cos^2 x - \sin^2 x
   \]
   \[
   \cos(2x) = \left(\frac{\sqrt{63}}{8}\right)^2 - \left(\frac{1}{8}\right)^2 = \frac{63}{64} - \frac{1}{64}
   \]
   \[
   \cos(2x) = \frac{62}{64} = \frac{31}{32}
   \]

4. **Find \(\tan(2x)\):**
   \[
   \tan(2x) = \frac{\sin(
Transcribed Image Text:**Problem 3:** Given that \(\sin x = \frac{1}{8}\) and \(x\) is in quadrant I, use the double-angle identities to find \(\sin(2x)\), \(\cos(2x)\), and \(\tan(2x)\). *(Hint: find \(\cos x\) and \(\tan x\) first.)* **Solution Approach:** 1. **Use Pythagorean Identity:** \[ \sin^2 x + \cos^2 x = 1 \] Substitute \(\sin x = \frac{1}{8}\): \[ \left(\frac{1}{8}\right)^2 + \cos^2 x = 1 \implies \frac{1}{64} + \cos^2 x = 1 \] \[ \cos^2 x = 1 - \frac{1}{64} = \frac{63}{64} \] Since \(x\) is in quadrant I: \[ \cos x = \frac{\sqrt{63}}{8} \] 2. **Find \(\sin(2x)\) using double-angle identity:** \[ \sin(2x) = 2 \sin x \cos x \] \[ \sin(2x) = 2 \left(\frac{1}{8}\right) \left(\frac{\sqrt{63}}{8}\right) = \frac{\sqrt{63}}{32} \] 3. **Find \(\cos(2x)\) using double-angle identity:** \[ \cos(2x) = \cos^2 x - \sin^2 x \] \[ \cos(2x) = \left(\frac{\sqrt{63}}{8}\right)^2 - \left(\frac{1}{8}\right)^2 = \frac{63}{64} - \frac{1}{64} \] \[ \cos(2x) = \frac{62}{64} = \frac{31}{32} \] 4. **Find \(\tan(2x)\):** \[ \tan(2x) = \frac{\sin(
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning