(1, √3) (a, b) = (-2, (-2,√3) (2√3, 2) (√3, 1) (√3, -1) - (a, b) - (a, b) = - (a, b) = (-1, √3) (a, b) = (1, -2) (a, b) = (2, 2√√3) - - (a, b) - - (a, b) - = = =
(1, √3) (a, b) = (-2, (-2,√3) (2√3, 2) (√3, 1) (√3, -1) - (a, b) - (a, b) = - (a, b) = (-1, √3) (a, b) = (1, -2) (a, b) = (2, 2√√3) - - (a, b) - - (a, b) - = = =
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![Here is the transcription of the text:
1. \((a, b) = \left(1, \sqrt{3}\right)\)
2. \((a, b) = \left(-2, \sqrt{3}\right)\)
3. \((a, b) = \left(2\sqrt{3}, 2\right)\)
4. \((a, b) = \left(\sqrt{3}, 1\right)\)
5. \((a, b) = \left(\sqrt{3}, -1\right)\)
6. \((a, b) = \left(-1, \sqrt{3}\right)\)
7. \((a, b) = \left(1, -2\right)\)
8. \((a, b) = \left(2, 2\sqrt{3}\right)\)
This list comprises ordered pairs \((a, b)\) where each value is either an integer or involves the square root of 3.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9a433dd5-6857-42c0-ae40-09bd40f154d3%2F8fcd3bc2-3606-45d2-a173-521c77eefa8c%2Fzjjolh_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Here is the transcription of the text:
1. \((a, b) = \left(1, \sqrt{3}\right)\)
2. \((a, b) = \left(-2, \sqrt{3}\right)\)
3. \((a, b) = \left(2\sqrt{3}, 2\right)\)
4. \((a, b) = \left(\sqrt{3}, 1\right)\)
5. \((a, b) = \left(\sqrt{3}, -1\right)\)
6. \((a, b) = \left(-1, \sqrt{3}\right)\)
7. \((a, b) = \left(1, -2\right)\)
8. \((a, b) = \left(2, 2\sqrt{3}\right)\)
This list comprises ordered pairs \((a, b)\) where each value is either an integer or involves the square root of 3.
![**Problem Statement:**
Find the Cartesian coordinates, \((a, b)\), of the point given in polar coordinates by \(P(2, \pi/3)\).
**Explanation:**
In this problem, you are asked to convert polar coordinates to Cartesian coordinates. The polar coordinates are given as \(P(2, \pi/3)\), where 2 is the radius \(r\) and \(\pi/3\) is the angle \(\theta\).
To convert from polar coordinates \((r, \theta)\) to Cartesian coordinates \((x, y)\), the following formulas are used:
\[ x = r \cdot \cos(\theta) \]
\[ y = r \cdot \sin(\theta) \]
**Solution Steps:**
1. Identify the given polar coordinates: \(r = 2\), \(\theta = \pi/3\).
2. Calculate the Cartesian coordinate \(x\):
\[ x = 2 \cdot \cos(\pi/3) \]
3. Calculate the Cartesian coordinate \(y\):
\[ y = 2 \cdot \sin(\pi/3) \]
Using these calculations, you will find the Cartesian coordinates \((a, b)\) of the given point.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9a433dd5-6857-42c0-ae40-09bd40f154d3%2F8fcd3bc2-3606-45d2-a173-521c77eefa8c%2Fmw9vxzm_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem Statement:**
Find the Cartesian coordinates, \((a, b)\), of the point given in polar coordinates by \(P(2, \pi/3)\).
**Explanation:**
In this problem, you are asked to convert polar coordinates to Cartesian coordinates. The polar coordinates are given as \(P(2, \pi/3)\), where 2 is the radius \(r\) and \(\pi/3\) is the angle \(\theta\).
To convert from polar coordinates \((r, \theta)\) to Cartesian coordinates \((x, y)\), the following formulas are used:
\[ x = r \cdot \cos(\theta) \]
\[ y = r \cdot \sin(\theta) \]
**Solution Steps:**
1. Identify the given polar coordinates: \(r = 2\), \(\theta = \pi/3\).
2. Calculate the Cartesian coordinate \(x\):
\[ x = 2 \cdot \cos(\pi/3) \]
3. Calculate the Cartesian coordinate \(y\):
\[ y = 2 \cdot \sin(\pi/3) \]
Using these calculations, you will find the Cartesian coordinates \((a, b)\) of the given point.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Given query is to find the Cartesian coordinates of the point P.
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning