#1 27 Prove that lim 777-20 1²-20 216 # 3 #2 Define a =0 - (give Define a sequence {ant by selling a, = 1, Apri= √2an+1. Is {any convergent, either prove disprore. 24~ bet Fant be a sequence such that lim Anti-an=0. conclude that fant is convergent. Can you. an E-nc feet). de

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

I need help solving those math problems.

**Analysis: Homework Set 2**

**#1** Prove that \(\lim_{n \to \infty} \frac{n}{n^2 + 20} = 0\). (Provide an \(\epsilon\)-\(N\) proof.)

**#2** Define a sequence \(a_n\) by setting \(a_1 = 1\), \(a_{n+1} = \sqrt{2a_n + 1}\). Is \(a_n\) convergent? Either prove or disprove.

**#3** Let \(a_n\) be a sequence such that \(\lim_{n \to \infty} (a_{n+1} - a_n) = 0\). Can you conclude that \(a_n\) is convergent?

**#4** Define the sequence \(a_n\) as follows:
\[ 
a_n = 
\begin{cases} 
\frac{(2k+1)^k}{2k+3} & \text{if } n=3k \\ 
\frac{1}{k^k} & \text{if } n=3k+1 \\ 
(-1)^k & \text{if } n=3k+2 
\end{cases} 
\]

Find \(\limsup_{n \to \infty} a_n\) and \(\liminf_{n \to \infty} a_n\).

**#5** Discuss the convergence of the series:
\[
\sum_{n=1}^{\infty} \frac{(\ln n)^3}{\sqrt{n}}
\]
Transcribed Image Text:**Analysis: Homework Set 2** **#1** Prove that \(\lim_{n \to \infty} \frac{n}{n^2 + 20} = 0\). (Provide an \(\epsilon\)-\(N\) proof.) **#2** Define a sequence \(a_n\) by setting \(a_1 = 1\), \(a_{n+1} = \sqrt{2a_n + 1}\). Is \(a_n\) convergent? Either prove or disprove. **#3** Let \(a_n\) be a sequence such that \(\lim_{n \to \infty} (a_{n+1} - a_n) = 0\). Can you conclude that \(a_n\) is convergent? **#4** Define the sequence \(a_n\) as follows: \[ a_n = \begin{cases} \frac{(2k+1)^k}{2k+3} & \text{if } n=3k \\ \frac{1}{k^k} & \text{if } n=3k+1 \\ (-1)^k & \text{if } n=3k+2 \end{cases} \] Find \(\limsup_{n \to \infty} a_n\) and \(\liminf_{n \to \infty} a_n\). **#5** Discuss the convergence of the series: \[ \sum_{n=1}^{\infty} \frac{(\ln n)^3}{\sqrt{n}} \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,