1 2. x V4-x2 a) Integral Number in the attached Table: b) Values of the constants: a = b = ;%3D c) Plug in the constants to find the integral (show how you plugged in!): d) Simplify your answer in part c):

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

For each problem, a) state the number of the integral in the attached Table; b) state the values of the constant(s); C) plug in the values of the constants to find the integral; d) simplify.

**Basic Integration Formulas**

1. \(\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)\)

2. \(\int x^{-1} \, dx = \ln |x| + C\)

3. \(\int e^x \, dx = e^x + C\)

4. \(\int a^x \, dx = \frac{a^x}{\ln a} + C \quad (a > 0)\)

**Substitution Formulas**

5. \(\int f'(u) \, du = f(u) + C\)

6. \(\int \frac{du}{u} = \ln |u| + C\)

7. \(\int e^u \, du = e^u + C\)

**Integration by Parts Formula**

8. \(\int u \, dv = uv - \int v \, du\)

**A Short Table of Integrals**

**Forms Involving \(ax + b\)**

9. \(\int a(ax + b)^n \, dx = \frac{(ax + b)^{n+1}}{a(n+1)} + C \quad (n \neq -1)\)

10. \(\int \frac{dx}{ax + b} = \frac{1}{a} \ln |ax + b| + C\)

11. \(\int x \, dx = \frac{x^2}{2} + C\)

12. \(\int x^2+b \, dx = \frac{x^3}{3} + bx + C\)

**Forms Involving \(\sqrt{x^2 + a^2}\) and \(\sqrt{x^2 - a^2}\)**

13. \(\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln |x + \sqrt{x^2 + a^2}| + C\)

14. \(\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln |
Transcribed Image Text:**Basic Integration Formulas** 1. \(\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)\) 2. \(\int x^{-1} \, dx = \ln |x| + C\) 3. \(\int e^x \, dx = e^x + C\) 4. \(\int a^x \, dx = \frac{a^x}{\ln a} + C \quad (a > 0)\) **Substitution Formulas** 5. \(\int f'(u) \, du = f(u) + C\) 6. \(\int \frac{du}{u} = \ln |u| + C\) 7. \(\int e^u \, du = e^u + C\) **Integration by Parts Formula** 8. \(\int u \, dv = uv - \int v \, du\) **A Short Table of Integrals** **Forms Involving \(ax + b\)** 9. \(\int a(ax + b)^n \, dx = \frac{(ax + b)^{n+1}}{a(n+1)} + C \quad (n \neq -1)\) 10. \(\int \frac{dx}{ax + b} = \frac{1}{a} \ln |ax + b| + C\) 11. \(\int x \, dx = \frac{x^2}{2} + C\) 12. \(\int x^2+b \, dx = \frac{x^3}{3} + bx + C\) **Forms Involving \(\sqrt{x^2 + a^2}\) and \(\sqrt{x^2 - a^2}\)** 13. \(\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln |x + \sqrt{x^2 + a^2}| + C\) 14. \(\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln |
**Exercise 2: Evaluate the Integral**

\[ \int \frac{1}{x \sqrt{4 - x^2}} \, dx \]

**Instructions:**

a) Integral Number in the attached Table: __________

b) Values of the constants: 
- a = __________ 
- b = __________ 
- c = __________ 
- d = __________

c) Plug in the constants to find the integral (show how you plugged in!):

d) Simplify your answer in part c):

---

*Note: Please refer to the attached table for determining the correct integral number and constants.*
Transcribed Image Text:**Exercise 2: Evaluate the Integral** \[ \int \frac{1}{x \sqrt{4 - x^2}} \, dx \] **Instructions:** a) Integral Number in the attached Table: __________ b) Values of the constants: - a = __________ - b = __________ - c = __________ - d = __________ c) Plug in the constants to find the integral (show how you plugged in!): d) Simplify your answer in part c): --- *Note: Please refer to the attached table for determining the correct integral number and constants.*
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning