[1 2 3] 4 5 6 7. 7 8 9 14. Find a symmetric matrix Q such that q(7) = T" Qu = "
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
A problem from
![**Problem Statement:**
14. Find a symmetric matrix \( Q \) such that \( q(\vec{x}) = \vec{x}^T Q \vec{x} = \vec{x}^T \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \vec{x} \).
**Explanation:**
The problem is to find a symmetric matrix \( Q \) such that the quadratic form \( q(\vec{x}) \) given by \( \vec{x}^T Q \vec{x} \) matches the quadratic form given by \( \vec{x}^T \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \vec{x} \).
A matrix \( Q \) is symmetric if and only if \( Q = Q^T \). This means that the matrix should be equal to its transpose.
\[
\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}
\]
The quadratic form \( q(\vec{x}) \) can be expanded as:
\[
\vec{x}^T Q \vec{x} = x_1 x_1 Q_{11} + x_1 x_2 (Q_{12} + Q_{21}) + x_1 x_3 (Q_{13} + Q_{31}) + x_2 x_2 Q_{22} + x_2 x_3 (Q_{23} + Q_{32}) + x_3 x_3 Q_{33}
\]
We need to equate this with:
\[
\vec{x}^T \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \vec{x}
\]
Which expands to:
\[
= 1 x_1^2 + (2 + 4)x_1 x_2 + (3 + 7)x_1 x_3 + 5 x_2^2 + (6 + 8)x_2 x_3 + 9 x_3^2
\]
So, \(](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F01d3fa41-37f0-44ee-9170-e98a030cc995%2Feed6e165-b0ff-4d0c-b8e4-a1f01e617726%2Fqc91fgn_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem Statement:**
14. Find a symmetric matrix \( Q \) such that \( q(\vec{x}) = \vec{x}^T Q \vec{x} = \vec{x}^T \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \vec{x} \).
**Explanation:**
The problem is to find a symmetric matrix \( Q \) such that the quadratic form \( q(\vec{x}) \) given by \( \vec{x}^T Q \vec{x} \) matches the quadratic form given by \( \vec{x}^T \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \vec{x} \).
A matrix \( Q \) is symmetric if and only if \( Q = Q^T \). This means that the matrix should be equal to its transpose.
\[
\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}
\]
The quadratic form \( q(\vec{x}) \) can be expanded as:
\[
\vec{x}^T Q \vec{x} = x_1 x_1 Q_{11} + x_1 x_2 (Q_{12} + Q_{21}) + x_1 x_3 (Q_{13} + Q_{31}) + x_2 x_2 Q_{22} + x_2 x_3 (Q_{23} + Q_{32}) + x_3 x_3 Q_{33}
\]
We need to equate this with:
\[
\vec{x}^T \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \vec{x}
\]
Which expands to:
\[
= 1 x_1^2 + (2 + 4)x_1 x_2 + (3 + 7)x_1 x_3 + 5 x_2^2 + (6 + 8)x_2 x_3 + 9 x_3^2
\]
So, \(
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)