1 2 3 4 5 6 7 Which of the following is a second-order linear nonhomogenous ODE? A) sin(x)y" + y = 0 B) sin(x)y"+y+3=0 C) sin(x) (y)² + D) sin(x) 4 Find the general solution of y'+-y=4x ? A) y=x² + B) y=x² + C) y = x² + D). x Find the values for the constants a, b in which the ODE (axy-by²) dx-(x² + 4xy) dy = 0 is exact? A) a=3,b=-2 B) a=-3,b=-2 D) a=0,b=-2 C) a=3,b=-4 By using a suitable substitution, the Bernoulli ODE y'+ xy = y, becomes a linear ODE of the form: A) u'-4xu=-4 B) u'-3x = -3u C) u'+3xu=3 D) u'- 3xu = -3 Find the exact solution for x'y'-y=0, y(1)=1 A) y=e³ +e_B) y=e¹² C)y=e=² +6 D) y = e¹= By using a suitable substitution, the non-separable ODE xy'=x+y, is reduces to a separable ODE of the C) xu'+2u=0 D) u'=-x 17 B) u'=x Find the general solution of y"-3y=0 A)u' = A) y=q₁x+c₂e¹ C)y=+₂e³x y = 0 B) y=ce² +₂e²¹ D) y=c₁ +₂e d e value(s) fork in which the general solution of 3y"+y+ky=0 is of the form ce +exe^, c₂, are real constants) A) k = 12 B) k=0 C) k = 1 D) k = Find an ODE whose basis of the general solution the functions y, = sin 3x, y₂ = cos 3.x A) y"-9y=0 B) y"+9y=0 C) y"-3y=0 10 The integrating factor of the non-exact D.E. (ex+y+ye) dx + (xey-1) dy = 0 D) y"+3y=0 (a) e-> (b)-y 11 the general solution for the second order ODE y" + 11y' +24y = 0 (c) y³ a) y = C₁ ex +C₂ e³x 12 the integrating factor for the first order ODE y' = 3 + 2y is (b) e² (a) e² e-2x (d) e²x -8x (b) y = C₁ e +C₂ ex (c) e (c) y = C₁ ex +C₂ e³ (d) y =
1 2 3 4 5 6 7 Which of the following is a second-order linear nonhomogenous ODE? A) sin(x)y" + y = 0 B) sin(x)y"+y+3=0 C) sin(x) (y)² + D) sin(x) 4 Find the general solution of y'+-y=4x ? A) y=x² + B) y=x² + C) y = x² + D). x Find the values for the constants a, b in which the ODE (axy-by²) dx-(x² + 4xy) dy = 0 is exact? A) a=3,b=-2 B) a=-3,b=-2 D) a=0,b=-2 C) a=3,b=-4 By using a suitable substitution, the Bernoulli ODE y'+ xy = y, becomes a linear ODE of the form: A) u'-4xu=-4 B) u'-3x = -3u C) u'+3xu=3 D) u'- 3xu = -3 Find the exact solution for x'y'-y=0, y(1)=1 A) y=e³ +e_B) y=e¹² C)y=e=² +6 D) y = e¹= By using a suitable substitution, the non-separable ODE xy'=x+y, is reduces to a separable ODE of the C) xu'+2u=0 D) u'=-x 17 B) u'=x Find the general solution of y"-3y=0 A)u' = A) y=q₁x+c₂e¹ C)y=+₂e³x y = 0 B) y=ce² +₂e²¹ D) y=c₁ +₂e d e value(s) fork in which the general solution of 3y"+y+ky=0 is of the form ce +exe^, c₂, are real constants) A) k = 12 B) k=0 C) k = 1 D) k = Find an ODE whose basis of the general solution the functions y, = sin 3x, y₂ = cos 3.x A) y"-9y=0 B) y"+9y=0 C) y"-3y=0 10 The integrating factor of the non-exact D.E. (ex+y+ye) dx + (xey-1) dy = 0 D) y"+3y=0 (a) e-> (b)-y 11 the general solution for the second order ODE y" + 11y' +24y = 0 (c) y³ a) y = C₁ ex +C₂ e³x 12 the integrating factor for the first order ODE y' = 3 + 2y is (b) e² (a) e² e-2x (d) e²x -8x (b) y = C₁ e +C₂ ex (c) e (c) y = C₁ ex +C₂ e³ (d) y =
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Q 5 please
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,