1 2 -1 3 2. IfT: R → R³ is a linear transformation whose standard matrix is 5 1 -3 -2 one and onto transformation. Jystify your answer. 4221 decide if T is one-to-
1 2 -1 3 2. IfT: R → R³ is a linear transformation whose standard matrix is 5 1 -3 -2 one and onto transformation. Jystify your answer. 4221 decide if T is one-to-
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![### Problem Statement
Consider a linear transformation \( T: \mathbb{R}^4 \rightarrow \mathbb{R}^3 \). The standard matrix for this transformation is given as:
\[
\begin{bmatrix}
1 & 2 & 1 \\
-1 & 3 & 2 \\
5 & 1 & -2 \\
-3 & -2 & 1
\end{bmatrix}
\]
Determine if the transformation \( T \) is a one-to-one and onto transformation. Justify your answer.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fefc0e927-4815-4e2f-82d9-9b6b5f419d74%2F2a2aa84b-26aa-488d-8d7a-ff7793e00cf2%2Fojanpf9_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Problem Statement
Consider a linear transformation \( T: \mathbb{R}^4 \rightarrow \mathbb{R}^3 \). The standard matrix for this transformation is given as:
\[
\begin{bmatrix}
1 & 2 & 1 \\
-1 & 3 & 2 \\
5 & 1 & -2 \\
-3 & -2 & 1
\end{bmatrix}
\]
Determine if the transformation \( T \) is a one-to-one and onto transformation. Justify your answer.
Expert Solution

Step 1: Some Results:
(i) If a linear transformation is one one .Then
(i) If a linear transformation is onto .Then rank(T)=n=dim(Rn)
Step by step
Solved in 4 steps with 6 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

