1 2 0 1 0 5 Given the matrix A is row equivalent to 0 0 1 -4 0 3 0 0 0 0 1 5 X = x2 + 000 000 X4 + " ☐☐☐☐☐☐ describe all solutions to Ax = 0. x6

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Given the matrix \( A \) is row equivalent to 

\[
\begin{bmatrix}
1 & -2 & 0 & 1 & 0 & 5 \\
0 & 0 & 1 & -4 & 0 & 3 \\
0 & 0 & 0 & 0 & 1 & 5 \\
\end{bmatrix}
\]

describe all solutions to \( Ax = 0 \).

The solution can be described as:

\[
x = 
\begin{bmatrix}
\text{ } \\
\text{ } \\
\text{ } \\
\text{ } \\
\text{ } \\
\text{ } \\
\end{bmatrix}
= x_2 
\begin{bmatrix}
\text{ } \\
\text{ } \\
\text{ } \\
\text{ } \\
\text{ } \\
\text{ } \\
\end{bmatrix}
+ x_4 
\begin{bmatrix}
\text{ } \\
\text{ } \\
\text{ } \\
\text{ } \\
\text{ } \\
\text{ } \\
\end{bmatrix}
+ x_6 
\begin{bmatrix}
\text{ } \\
\text{ } \\
\text{ } \\
\text{ } \\
\text{ } \\
\text{ } \\
\end{bmatrix}
\]

where each matrix represents a column vector, and \( x_2, x_4, x_6 \) are free variables corresponding to the non-pivot columns in the reduced row echelon form of the matrix \( A \). Each of these columns represents a basis vector for the solution space of the homogeneous system \( Ax = 0 \).
Transcribed Image Text:Given the matrix \( A \) is row equivalent to \[ \begin{bmatrix} 1 & -2 & 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & -4 & 0 & 3 \\ 0 & 0 & 0 & 0 & 1 & 5 \\ \end{bmatrix} \] describe all solutions to \( Ax = 0 \). The solution can be described as: \[ x = \begin{bmatrix} \text{ } \\ \text{ } \\ \text{ } \\ \text{ } \\ \text{ } \\ \text{ } \\ \end{bmatrix} = x_2 \begin{bmatrix} \text{ } \\ \text{ } \\ \text{ } \\ \text{ } \\ \text{ } \\ \text{ } \\ \end{bmatrix} + x_4 \begin{bmatrix} \text{ } \\ \text{ } \\ \text{ } \\ \text{ } \\ \text{ } \\ \text{ } \\ \end{bmatrix} + x_6 \begin{bmatrix} \text{ } \\ \text{ } \\ \text{ } \\ \text{ } \\ \text{ } \\ \text{ } \\ \end{bmatrix} \] where each matrix represents a column vector, and \( x_2, x_4, x_6 \) are free variables corresponding to the non-pivot columns in the reduced row echelon form of the matrix \( A \). Each of these columns represents a basis vector for the solution space of the homogeneous system \( Ax = 0 \).
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,