1 2 0 0 2 0 0 2 0 0 plain why span M2(R) 0 4 3 4

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Explanation of Matrix Span

**Problem Statement:**
Explain why the span of the matrices
\[ 
\left\{ 
\begin{bmatrix}
2 & 0 \\
0 & 4 
\end{bmatrix}, 
\begin{bmatrix}
0 & 2 \\
4 & 0 
\end{bmatrix}, 
\begin{bmatrix}
1 & 2 \\
0 & 0 
\end{bmatrix}, 
\begin{bmatrix}
0 & 0 \\
3 & 4 
\end{bmatrix} 
\right\} 
= M_2(\mathbb{R}) 
\]

**Explanation:**

To prove that the set of given matrices spans \( M_2(\mathbb{R}) \), the space of all \( 2 \times 2 \) matrices with real number entries, we need to show that any \( 2 \times 2 \) matrix can be expressed as a linear combination of these four matrices.

### Process:

1. **Identify the Basis Requirement:**
   - A general \( 2 \times 2 \) matrix is of the form:
     \[
     \begin{bmatrix}
     a & b \\
     c & d 
     \end{bmatrix}
     \]
   - We must find real numbers \( \alpha, \beta, \gamma, \delta \) such that:
     \[
     \alpha 
     \begin{bmatrix}
     2 & 0 \\
     0 & 4 
     \end{bmatrix} 
     + \beta 
     \begin{bmatrix}
     0 & 2 \\
     4 & 0 
     \end{bmatrix}
     + \gamma 
     \begin{bmatrix}
     1 & 2 \\
     0 & 0 
     \end{bmatrix} 
     + \delta 
     \begin{bmatrix}
     0 & 0 \\
     3 & 4 
     \end{bmatrix}
     = 
     \begin{bmatrix}
     a & b \\
     c & d 
     \end{bmatrix}
     \]

2. **Solve for Coefficients:**
   - Equating the entries of matrices, we get:
     - \( 2\alpha + \
Transcribed Image Text:### Explanation of Matrix Span **Problem Statement:** Explain why the span of the matrices \[ \left\{ \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 4 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 3 & 4 \end{bmatrix} \right\} = M_2(\mathbb{R}) \] **Explanation:** To prove that the set of given matrices spans \( M_2(\mathbb{R}) \), the space of all \( 2 \times 2 \) matrices with real number entries, we need to show that any \( 2 \times 2 \) matrix can be expressed as a linear combination of these four matrices. ### Process: 1. **Identify the Basis Requirement:** - A general \( 2 \times 2 \) matrix is of the form: \[ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \] - We must find real numbers \( \alpha, \beta, \gamma, \delta \) such that: \[ \alpha \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix} + \beta \begin{bmatrix} 0 & 2 \\ 4 & 0 \end{bmatrix} + \gamma \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} + \delta \begin{bmatrix} 0 & 0 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \] 2. **Solve for Coefficients:** - Equating the entries of matrices, we get: - \( 2\alpha + \
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,