1-128 A thin metal plate is insulated on the back and ex- posed to solar radiation on the front surface. The exposed sur- face of the plate has an absorptivity of 0.7 for solar radiation. If solar radiation is incident on the plate at a rate of 700 W/m² and the surrounding air temperature is 10°C, determine the sur- face temperature of the plate when the heat loss by convection equals the solar energy absorbed by the plate. Take the convec- tion heat transfer coefficient to be 30 W/m² °C, and disregard any heat loss by radiation.

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
1-128 A thin metal plate is insulated on the back and ex-
posed to solar radiation on the front surface. The exposed sur-
face of the plate has an absorptivity of 0.7 for solar radiation. If
solar radiation is incident on the plate at a rate of 700 W/m²
and the surrounding air temperature is 10°C, determine the sur-
face temperature of the plate when the heat loss by convection
equals the solar energy absorbed by the plate. Take the convec-
tion heat transfer coefficient to be 30 W/m² °C, and disregard
any heat loss by radiation.
700 W/m²
a = 0,7
FIGURE P1-128
10°C
Transcribed Image Text:1-128 A thin metal plate is insulated on the back and ex- posed to solar radiation on the front surface. The exposed sur- face of the plate has an absorptivity of 0.7 for solar radiation. If solar radiation is incident on the plate at a rate of 700 W/m² and the surrounding air temperature is 10°C, determine the sur- face temperature of the plate when the heat loss by convection equals the solar energy absorbed by the plate. Take the convec- tion heat transfer coefficient to be 30 W/m² °C, and disregard any heat loss by radiation. 700 W/m² a = 0,7 FIGURE P1-128 10°C
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The