1 -1 X%3D X. 0 1
Equations and Inequations
Equations and inequalities describe the relationship between two mathematical expressions.
Linear Functions
A linear function can just be a constant, or it can be the constant multiplied with the variable like x or y. If the variables are of the form, x2, x1/2 or y2 it is not linear. The exponent over the variables should always be 1.
Solve
![The image displays a mathematical expression involving vectors and matrices, commonly used in linear algebra. The expression is as follows:
\[ \mathbf{x'} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \mathbf{x} \]
### Explanation:
- \(\mathbf{x'}\) represents a transformed vector resulting from the matrix multiplication.
- The matrix \(\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}\) is a 2x2 matrix that transforms the vector \(\mathbf{x}\).
- This particular matrix appears to perform a shearing transformation in a two-dimensional space, where the x-component is adjusted by subtracting the y-component, but the y-component remains unchanged.
This content might be used in a section discussing linear transformations or matrices in a linear algebra course on an educational website.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F820a86f4-7194-4c38-bb3b-53057670e22e%2F9ae92629-3406-45b0-a0a8-3083acb08cfc%2Fhy243cc_processed.jpeg&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Given:
Let
Since is a upper triangular matrix . So, its eigenvalues are just the diagonal entries .
So, eigenvalue of is 1 with multiplicity 2.
Now we find eigen vector corresponding to this eigenvalue.
Consider
So, where can take any value.
So, is the eigen vector
Now, to find another linearly independent vector , consider
So, where can take any value.
So, another linearly independent vector is
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)