(1; 0 < t < 1 i) Find L[f(t)], Where f(t) = 2; 2 < t < 4 0; t>4

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Solve i
a) Find the Laplace transformation of the function f(t) = cosh at sinh bt
b) Find 2f where f = e2x sin2y.
c) Write the sufficient condition for existence of Laplace transformation of a
function.
d)
Find the Directional derivative of the function f = x² + y² at a point p (1,1) in
the direction ä2î - 4j
e) State Green's theorem in plane.
f)
Find the Laplace transformation of the unit impulse function
8(t-22017) and The unit step function U(t-22017)
g)
Find the Fourier sine series of the function f(x)=-100¹0(-n < x <n);
f(x)= 100¹0(0<x<n)
h)
Find a parametric representation of the Parabolic equation
z = 9(x² + y²)
i)
j)
(1; 0 < t < 1
Find L[f(t)]. Where f(t) = 2; 2 <t<4
(0;
t> 4
Find the value of L-1
s² +6
[(s²+1)(s+4)]
Transcribed Image Text:a) Find the Laplace transformation of the function f(t) = cosh at sinh bt b) Find 2f where f = e2x sin2y. c) Write the sufficient condition for existence of Laplace transformation of a function. d) Find the Directional derivative of the function f = x² + y² at a point p (1,1) in the direction ä2î - 4j e) State Green's theorem in plane. f) Find the Laplace transformation of the unit impulse function 8(t-22017) and The unit step function U(t-22017) g) Find the Fourier sine series of the function f(x)=-100¹0(-n < x <n); f(x)= 100¹0(0<x<n) h) Find a parametric representation of the Parabolic equation z = 9(x² + y²) i) j) (1; 0 < t < 1 Find L[f(t)]. Where f(t) = 2; 2 <t<4 (0; t> 4 Find the value of L-1 s² +6 [(s²+1)(s+4)]
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,