1 0 1 ~EHEMMEHO V 4 2 0 Let v = 1 0 4 O C.S O d. {v, - and S= { v₁ O a. (v. v₂} 1 2 9 O b. {V₁, V 3 } 1 v₁} 4 . 1 1 V 3 4 ○e. { v₁ • V 2• V3} 0 0 and v }. A basis for span (S) is 4 1 1 6

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
The image contains mathematical text and a problem related to linear algebra. Here is the transcription:

---

**Let** \( v_1 = \begin{bmatrix} 1 \\ 0 \\ 4 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 4 \\ -1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ -1 \end{bmatrix}, \quad v_3 = \begin{bmatrix} -1 \\ 0 \\ 0 \\ -1 \end{bmatrix} \quad \text{and} \quad v_4 = \begin{bmatrix} 1 \\ 1 \\ 6 \\ -2 \end{bmatrix} \]

and \( S = \{ v_1, v_2, v_3, v_4 \} \). A basis for span(\( S \)) is

- a. \( \{ v_1, v_2 \} \)
- b. \( \{ v_1, v_3 \} \)
- c. \( S \)
- d. \( \{ v_1, v_4 \} \)
- e. \( \{ v_1, v_2, v_3 \} \)

---

This section is designed for educational purposes to explore the concept of vector spaces and basis determination in linear algebra.
Transcribed Image Text:The image contains mathematical text and a problem related to linear algebra. Here is the transcription: --- **Let** \( v_1 = \begin{bmatrix} 1 \\ 0 \\ 4 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 4 \\ -1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ -1 \end{bmatrix}, \quad v_3 = \begin{bmatrix} -1 \\ 0 \\ 0 \\ -1 \end{bmatrix} \quad \text{and} \quad v_4 = \begin{bmatrix} 1 \\ 1 \\ 6 \\ -2 \end{bmatrix} \] and \( S = \{ v_1, v_2, v_3, v_4 \} \). A basis for span(\( S \)) is - a. \( \{ v_1, v_2 \} \) - b. \( \{ v_1, v_3 \} \) - c. \( S \) - d. \( \{ v_1, v_4 \} \) - e. \( \{ v_1, v_2, v_3 \} \) --- This section is designed for educational purposes to explore the concept of vector spaces and basis determination in linear algebra.
Select all subspaces of \(\mathbb{R}^3\).

a. \(\begin{bmatrix} 1 & 3 \\ 0 & 1 \\ 2 & 7 \end{bmatrix}\)  
   \(col\left(\begin{bmatrix} 1 & 3 \\ 0 & 1 \\ 2 & 7 \end{bmatrix}\right)\)

b. \(\{(x + 2, x - 1, z) \, / \, x \text{ and } z \text{ are arbitrary real numbers}\}\)

c. \(\begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}\)  
   \(span\left\{\begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}\right\}\)

d. \(\{(2x, 3x, 4x) \, / \, x \in \mathbb{R} \}\)

e. \(\{(x, y, z) \in \mathbb{R}^3 \, / \, x + y + z = 0 \}\)
Transcribed Image Text:Select all subspaces of \(\mathbb{R}^3\). a. \(\begin{bmatrix} 1 & 3 \\ 0 & 1 \\ 2 & 7 \end{bmatrix}\) \(col\left(\begin{bmatrix} 1 & 3 \\ 0 & 1 \\ 2 & 7 \end{bmatrix}\right)\) b. \(\{(x + 2, x - 1, z) \, / \, x \text{ and } z \text{ are arbitrary real numbers}\}\) c. \(\begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}\) \(span\left\{\begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}\right\}\) d. \(\{(2x, 3x, 4x) \, / \, x \in \mathbb{R} \}\) e. \(\{(x, y, z) \in \mathbb{R}^3 \, / \, x + y + z = 0 \}\)
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,