1 0 07 Let A = 0 0 2 0 3 0 %3D Find the Characteristic Polynomial, and compute the Eigenvalues: O p(X) = X3 – 6X² + 11A – 6 = A1 = 1, d2 = 2, X3 = 3 O-p(X) = X – 2A2 – 5X + 6= A1 = 1, X2 = -2, A3 = 3 O-p(X) = X3 +7A + 6 = A1 = 1, d2 = 2, X3 = -3 O-p(X) = X3 4X² + 1A – 6 → A1 = 1, A2 = -2, A3 = -3 O-p(X) = X³ – X² – 6X + 6 > A1 = 1, d2 = v6, A3 = -V6 O-p(A) = X3 –X2 – 3A + 3= A1 = 1, X2 = v3, A3 = -V3 O-p(A) = X3 – X² – 2A + 2 → d1 = 1, X2 = /2, d3 = -/2 %3D - %3D %3D %3D %3D %3D %3D %3D %3D %3D %3D %3D
1 0 07 Let A = 0 0 2 0 3 0 %3D Find the Characteristic Polynomial, and compute the Eigenvalues: O p(X) = X3 – 6X² + 11A – 6 = A1 = 1, d2 = 2, X3 = 3 O-p(X) = X – 2A2 – 5X + 6= A1 = 1, X2 = -2, A3 = 3 O-p(X) = X3 +7A + 6 = A1 = 1, d2 = 2, X3 = -3 O-p(X) = X3 4X² + 1A – 6 → A1 = 1, A2 = -2, A3 = -3 O-p(X) = X³ – X² – 6X + 6 > A1 = 1, d2 = v6, A3 = -V6 O-p(A) = X3 –X2 – 3A + 3= A1 = 1, X2 = v3, A3 = -V3 O-p(A) = X3 – X² – 2A + 2 → d1 = 1, X2 = /2, d3 = -/2 %3D - %3D %3D %3D %3D %3D %3D %3D %3D %3D %3D %3D
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![1 0 07
0 0 2
0 3 0
Let A =
%3D
Find the Characteristic Polynomial, and compute the Eigenvalues:
O-p(X) = X3 – 6X² + 11A – 6 = A1 = 1, d2 = 2, X3 = 3
O-p(X) = X3 – 2A2 – 5X + 6= A1 = 1, X2 = -2, A3 = 3
O -p(A) = X3 + 7A + 6 = X1 = 1, d2 = 2, A3 = -3
O -p(A) = X³ 4X² + 1A – 6 → A1 = 1, A2 = -2, A3 = -3
O-p(A) = X3 – X? – 6X + 6 → A, = 1, A2 = v6, Ag =-V6
O-p(X) = X³ – X² – 31 + 3 → A, = 1, A2 = v3, dg = -V3
O-p(A) = X3 – X² – 21 + 2 → d1 = 1, A2 = /2, d3 = -/2
000](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff172dd94-683b-4389-937a-ed6109246f09%2Fd159302d-3487-43c1-828a-735f83129862%2Fj8mvabt_processed.jpeg&w=3840&q=75)
Transcribed Image Text:1 0 07
0 0 2
0 3 0
Let A =
%3D
Find the Characteristic Polynomial, and compute the Eigenvalues:
O-p(X) = X3 – 6X² + 11A – 6 = A1 = 1, d2 = 2, X3 = 3
O-p(X) = X3 – 2A2 – 5X + 6= A1 = 1, X2 = -2, A3 = 3
O -p(A) = X3 + 7A + 6 = X1 = 1, d2 = 2, A3 = -3
O -p(A) = X³ 4X² + 1A – 6 → A1 = 1, A2 = -2, A3 = -3
O-p(A) = X3 – X? – 6X + 6 → A, = 1, A2 = v6, Ag =-V6
O-p(X) = X³ – X² – 31 + 3 → A, = 1, A2 = v3, dg = -V3
O-p(A) = X3 – X² – 21 + 2 → d1 = 1, A2 = /2, d3 = -/2
000
![Let A =
Find the Characteristic Polynomial, and compute the Eigenvalues:
They are (note i = v-1) is the iaginary "unit"):
O p(A) = X² + 21 +1=A1 = -1, and A2 = -1,
O p(A) = X² – 1=\1 = -1, and A2 = 1
O p(A) = X² – A +1=A1 = 1, and dz
O p(A) = X² + 2A + 2 = A1 = -1+ i, and X2 = -1 - i
O p(A) = X – 2A + 2 A1 = 1 + i, and A, = 1 – i
O p(A) = X2 +1=\1 = i, and A2 = -i
1
W
000
000 F4
F3
E5](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff172dd94-683b-4389-937a-ed6109246f09%2Fd159302d-3487-43c1-828a-735f83129862%2Fyqegi_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Let A =
Find the Characteristic Polynomial, and compute the Eigenvalues:
They are (note i = v-1) is the iaginary "unit"):
O p(A) = X² + 21 +1=A1 = -1, and A2 = -1,
O p(A) = X² – 1=\1 = -1, and A2 = 1
O p(A) = X² – A +1=A1 = 1, and dz
O p(A) = X² + 2A + 2 = A1 = -1+ i, and X2 = -1 - i
O p(A) = X – 2A + 2 A1 = 1 + i, and A, = 1 – i
O p(A) = X2 +1=\1 = i, and A2 = -i
1
W
000
000 F4
F3
E5
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Similar questions
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)