00 L{t}(s) = | te st dt u = dv = -se^(-st) %3D du = 1dt v = e^(-st) 00 00 -t(e^(-st)/s) e^(-st)/-s^2 (e^(-st))/-s^2 -1/s^2 1/s^2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
The image displays the process of finding the Laplace Transform of a function using integration by parts.

1. **Laplace Transform Definition**:
   \[
   L\{t\}(s) = \int_{0}^{\infty} t e^{-st} dt
   \]

2. **Integration by Parts Setup**:
   - \( u = t \) and \( dv = -se^{-st} \)
   - \( du = 1 \, dt \) and \( v = e^{-st} \)

3. **Integration by Parts Formula**:
   \[
   \int u \, dv = uv - \int v \, du
   \]

4. **Applying the Formula**:
   \[
   = \left[ -t \frac{e^{-st}}{s} \right]_{0}^{\infty} - \int_{0}^{\infty} \frac{e^{-st}}{s^2} dt
   \]

5. **Evaluating Bounds**:
   - The first term evaluates to 0 at both limits.
   - For the second term:  
     \[
     \int_{0}^{\infty} \frac{e^{-st}}{s^2} dt = \left[ \frac{e^{-st}}{-s^2} \right]_{0}^{\infty}
     \]

6. **Final Calculation**:
   \[
   = 0 - \left(0 - \left( -\frac{1}{s^2} \right)\right) = \frac{1}{s^2}
   \]

**Conclusion**: The Laplace Transform of \( t \) is \(\frac{1}{s^2}\).
Transcribed Image Text:The image displays the process of finding the Laplace Transform of a function using integration by parts. 1. **Laplace Transform Definition**: \[ L\{t\}(s) = \int_{0}^{\infty} t e^{-st} dt \] 2. **Integration by Parts Setup**: - \( u = t \) and \( dv = -se^{-st} \) - \( du = 1 \, dt \) and \( v = e^{-st} \) 3. **Integration by Parts Formula**: \[ \int u \, dv = uv - \int v \, du \] 4. **Applying the Formula**: \[ = \left[ -t \frac{e^{-st}}{s} \right]_{0}^{\infty} - \int_{0}^{\infty} \frac{e^{-st}}{s^2} dt \] 5. **Evaluating Bounds**: - The first term evaluates to 0 at both limits. - For the second term: \[ \int_{0}^{\infty} \frac{e^{-st}}{s^2} dt = \left[ \frac{e^{-st}}{-s^2} \right]_{0}^{\infty} \] 6. **Final Calculation**: \[ = 0 - \left(0 - \left( -\frac{1}{s^2} \right)\right) = \frac{1}{s^2} \] **Conclusion**: The Laplace Transform of \( t \) is \(\frac{1}{s^2}\).
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,