-0.6 0.3753 10. Find -0.4 0.4204 f)(x) = -0.2 0.4618 0.0 0.5 0.2 0.5355 X f(x) 9. Use Simpson's Three-Eighth Rule (n = 3) to estimate f(x)dx= a). 0.2958 b). 0.3956 0.4 0.5686 06 2.06 c). 0.4951 for and Upper Bound of Error, E = Simpson's Three-Eighth Rule (n=3, h = 0.4) a. -3(x+e) and 5.72x10-5 c. 6(x+e) and 4.72x10 b. 2(x+e) and 5.72x10 d. -(x+e) and 4.72x10-² 0.6 0.5997 d). 0.5950

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Given f(x)=In(√√x+e), on [-0.6, 0.6] and the values of f(x) at different points below:
-0.6
0.3753
-0.4
0.4204
-0.2
0.4618
0.0
0.5
0.2
0.5355
0.4
0.5686
X
f(x)
06
9. Use Simpson's Three-Eighth Rule (n = 3) to estimate f(x) dx =
-06
a). 0.2958
b). 0.3956
c). 0.4951
10. Find (x)=
and Upper Bound of Error, E=
Simpson's Three-Eighth Rule (n=3, h = 0.4)
a. -3(x+e) and 5.72x10-¹
b. 2(x+e) and 5.72x10
for
c. 6(x+e) and 4.72x10-¹
d. -(x+e)² and 4.72x10²
0.6
0.5997
d). 0.5950
11. Use Three-Point Formula II with h=0.2 to find Numerical Differentiation at x = 0,
j'(x) = f'(0) =
a). 0.18394 b). 0.18425 c). 0.18952 d). 0.18245
Transcribed Image Text:Given f(x)=In(√√x+e), on [-0.6, 0.6] and the values of f(x) at different points below: -0.6 0.3753 -0.4 0.4204 -0.2 0.4618 0.0 0.5 0.2 0.5355 0.4 0.5686 X f(x) 06 9. Use Simpson's Three-Eighth Rule (n = 3) to estimate f(x) dx = -06 a). 0.2958 b). 0.3956 c). 0.4951 10. Find (x)= and Upper Bound of Error, E= Simpson's Three-Eighth Rule (n=3, h = 0.4) a. -3(x+e) and 5.72x10-¹ b. 2(x+e) and 5.72x10 for c. 6(x+e) and 4.72x10-¹ d. -(x+e)² and 4.72x10² 0.6 0.5997 d). 0.5950 11. Use Three-Point Formula II with h=0.2 to find Numerical Differentiation at x = 0, j'(x) = f'(0) = a). 0.18394 b). 0.18425 c). 0.18952 d). 0.18245
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,