0.29 -0.01 0.38 0.1 Let A = 0.25 0.75 0.5 The vector v₁ = 0.5 is an eigenvector for A, and two eigenvalues are 0.5 and 0.1. 0.23 0.13 0.56 0.2 Construct the solution of the dynamical system XK+1=Axk that satisfies x₁ = (-0.3,-0.3,0.8). What happens to xx as k→∞o? Find the solution of the equation XK+ 1 = Axk. Choose the correct answer below. 0.1 OA. X 0.5 +0.2(0.5) 0.2 2 -4 +0.4(0.1) 1 -2 1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Matrix Algebra and Dynamical Systems

#### Eigenvectors and Eigenvalues

Consider the matrix \( A \) and its associated eigenvector \( \mathbf{v}_1 \):

\[ A = \begin{bmatrix}  0.29 & -0.01 & 0.38 \\  0.25 & 0.75 & 0.5 \\  0.23 & 0.13 & 0.56 \end{bmatrix} \]

\[ \mathbf{v}_1 = \begin{bmatrix} 0.1 \\ 0.5 \\ 0.2 \end{bmatrix} \]

This eigenvector is associated with \( A \), and the eigenvalues of \( A \) are 0.5 and 0.1.

#### Dynamical System

We are given a dynamical system described by:

\[ \mathbf{x}_{k+1} = A \mathbf{x}_k \]

with the initial condition:

\[ \mathbf{x}_0 = \begin{bmatrix} -0.3 \\ -0.3 \\ 0.8 \end{bmatrix} \]

Our goal is to determine the behavior of \( \mathbf{x}_k \) as \( k \to \infty \).

#### Numerical Solution

To find the numerical solution for the equation \( \mathbf{x}_{k+1} = A \mathbf{x}_k \), we must explore the given options. The correct answer must be determined based on how \( \mathbf{x}_k \) evolves over iterations.

The options provided are:

- **Option A:**

  \[ \mathbf{x}_k = \begin{bmatrix} 0.1 \\ 0.5 \\ 0.2 \end{bmatrix} + 0.2(0.5)^k \begin{bmatrix} 2 \\ -4 \\ 1 \end{bmatrix} + 0.4(0.1)^k \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} \]

- **Option B:**

  \[ \mathbf{x}_k = \begin{bmatrix} 2 & -2 & 0 \\ -4 & 4 & 1 \\ 1 & 0 & 1 \end{bmatrix} + 0.2(0.5)^k \begin{
Transcribed Image Text:### Matrix Algebra and Dynamical Systems #### Eigenvectors and Eigenvalues Consider the matrix \( A \) and its associated eigenvector \( \mathbf{v}_1 \): \[ A = \begin{bmatrix} 0.29 & -0.01 & 0.38 \\ 0.25 & 0.75 & 0.5 \\ 0.23 & 0.13 & 0.56 \end{bmatrix} \] \[ \mathbf{v}_1 = \begin{bmatrix} 0.1 \\ 0.5 \\ 0.2 \end{bmatrix} \] This eigenvector is associated with \( A \), and the eigenvalues of \( A \) are 0.5 and 0.1. #### Dynamical System We are given a dynamical system described by: \[ \mathbf{x}_{k+1} = A \mathbf{x}_k \] with the initial condition: \[ \mathbf{x}_0 = \begin{bmatrix} -0.3 \\ -0.3 \\ 0.8 \end{bmatrix} \] Our goal is to determine the behavior of \( \mathbf{x}_k \) as \( k \to \infty \). #### Numerical Solution To find the numerical solution for the equation \( \mathbf{x}_{k+1} = A \mathbf{x}_k \), we must explore the given options. The correct answer must be determined based on how \( \mathbf{x}_k \) evolves over iterations. The options provided are: - **Option A:** \[ \mathbf{x}_k = \begin{bmatrix} 0.1 \\ 0.5 \\ 0.2 \end{bmatrix} + 0.2(0.5)^k \begin{bmatrix} 2 \\ -4 \\ 1 \end{bmatrix} + 0.4(0.1)^k \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} \] - **Option B:** \[ \mathbf{x}_k = \begin{bmatrix} 2 & -2 & 0 \\ -4 & 4 & 1 \\ 1 & 0 & 1 \end{bmatrix} + 0.2(0.5)^k \begin{
Expert Solution
steps

Step by step

Solved in 6 steps with 20 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,