------0-- = V3 = 2 Apply the Gram-Schmidt process to V₁ = and find out an orthonormal basis for W = Span(V₁, V2, V3, V4). V4=

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
4
H.
and find out an orthonormal basis for W = Span(V₁, V2, V3, V4).
Apply the Gram-Schmidt process to v₁
=
, V₂ =
2
V3
=
V4 =
-2
3
1
Transcribed Image Text:4 H. and find out an orthonormal basis for W = Span(V₁, V2, V3, V4). Apply the Gram-Schmidt process to v₁ = , V₂ = 2 V3 = V4 = -2 3 1
Expert Solution
Step 1: ''Introduction to the solution''

Given that : v subscript 1 equals open square brackets table row 1 row 0 row 1 end table close square brackets comma v subscript 2 equals open square brackets table row cell negative 2 end cell row 0 row 2 end table close square brackets comma v subscript 3 equals open square brackets table row 1 row 1 row 2 end table close square brackets spaceand v subscript 4 equals open square brackets table row cell negative 2 end cell row 3 row 1 end table close square brackets

We  have to find an orthonormal basis for W equals S p a n left parenthesis v subscript 1 comma v subscript 2 comma v subscript 3 comma v subscript 4 right parenthesis.

Let us apply Gram-Schmidt process to the given vectors.

Let w subscript 1 equals v subscript 1 equals open square brackets table row 1 row 0 row 1 end table close square brackets Then, stack w subscript 1 with overbrace on top equals fraction numerator w subscript 1 over denominator open vertical bar w subscript 1 close vertical bar end fraction equals 1 half open square brackets table row 1 row 0 row 1 end table close square brackets equals open square brackets table row cell 1 half end cell row 0 row cell 1 half end cell end table close square brackets

w subscript 2 equals v subscript 2 minus fraction numerator open angle brackets v subscript 2 comma w subscript 1 close angle brackets over denominator open angle brackets w subscript 1 comma w subscript 1 close angle brackets end fraction w subscript 1
space space space space space equals open square brackets table row cell negative 2 end cell row 0 row 2 end table close square brackets space space left square bracket sin c e comma space open angle brackets v subscript 2 comma w subscript 1 close angle brackets equals left parenthesis negative 2 plus 0 plus 2 right parenthesis equals 0 right square bracket

Then, the corresponding the unit vector  is  stack w subscript 2 with overbrace on top equals fraction numerator w subscript 2 over denominator open vertical bar w subscript 2 close vertical bar end fraction equals fraction numerator 1 over denominator square root of 8 end fraction open square brackets table row cell negative 2 end cell row 0 row 2 end table close square brackets equals open square brackets table row cell negative fraction numerator 1 over denominator square root of 2 end fraction end cell row 0 row cell fraction numerator 1 over denominator square root of 2 end fraction end cell end table close square brackets

steps

Step by step

Solved in 3 steps with 14 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,