=0 Πιο Ω_q+1)t-q + 1 ΠΩ(q+1)t-q Πιο Ω_q+1)t-q + 1 ΠoΩ(q+1)t-q/Ω(64+5) thus Ω(7q+6) > Ω—(6q+5)• Th h=0 k=1 1 Πιο Ω(q+1)k-(q+1)t-q + 1 o Th+1 1 -ΣΠ Πιο Ω(q+1)k-(q+1)t-q +1 h=0 k=1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Show me the steps of determine blue and all information is here 

From the equations (3) and (4),
C.
7h
II-o 2-(q+1)t-q+1
TI-, 2-(q+1)t-q
ΣΠ
1
t30
2IIT g+1)k-(q+1)t-q † 1
>
t=0
h=0 k=1
0o 7h+1
II-0 2-(q+1)t-q
II-o 2-(4+1)t-q/S2-(6q+5)
+ 1
1
ΣΠ
II-o P(a+1)k-(q+1)t-q +1
t=0
h=0 k=1
=0
thus 2-(79+6) > S2-(6q+5).
Transcribed Image Text:From the equations (3) and (4), C. 7h II-o 2-(q+1)t-q+1 TI-, 2-(q+1)t-q ΣΠ 1 t30 2IIT g+1)k-(q+1)t-q † 1 > t=0 h=0 k=1 0o 7h+1 II-0 2-(q+1)t-q II-o 2-(4+1)t-q/S2-(6q+5) + 1 1 ΣΠ II-o P(a+1)k-(q+1)t-q +1 t=0 h=0 k=1 =0 thus 2-(79+6) > S2-(6q+5).
In this work, we deal with the following nonlinear difference equation
Im-(7g+6)
1+II-o Pm-(a+1)t-g
2-1, lo E (0, 0) is investigated.
Sm+1
m = 0, 1, ..,
(1)
t%3D0
where 2-(79+6), S2-(79+5),
(d) We can generate the following formulas:
L(79+7)n+r(q+1)+s+1 = (r-7)(4+1)+s+1 (1–
(IIm=1 2-(mg+m-1)+s)/l(r-7)(g+1)+s+1
1+ (IIm=1
-D1
-(mg+m-1)+s)
7h+r
1
ΣΠ
Ilm-1 P(a+1)t-(mg+m-1)+s + 1
h=0 k=1
=D1
(e) If S2(7g+7)n+(t-1)q+t → a(t-1)q+t 70 then 279+7)n+6q+7 → 0 as n → 0,
If 2(79+7)n+tq+t → atg+t +0 then N(7g+7)n+79+7 + 0 as n → 0. t = 1,6.
(e) Suppose that a1 = ag+2 = a2q+3 = a3q+4
= a4g+5
a5q+6
A6q+7
0. By (d), we
produce the following formulas below:
lim N(79+7)n+1
lim 2-(79+6)
1
II-o 2-(q+1)t-9
-(q+1)t-q
+1
It%3D0
n
7h
ΣΠ
1
LII TE 2(a+1)k-(q+1)t-q †
h=0 k=1
Lt30
T, N-(9+1)t-q5?-114921I ,(a+1)k-(4+1)t-9
7h
1
=N-(79+6)
1
II-o 2-(9+1)t-g+1
+1
h=0 k=1
It=D0
7h
II-o 2-(9+1)t-q+1
II-0 2-(a+1)t-9
1
EIIE g+1)k-(q+1)t-q ™ +
aj = 0 >
(3)
=
h=0 k=1
t%3D0
II-o 2-(4+1)t-q/2-(6q+5).
1
lim N(79+7)n+q+2= lim 2-(6q+5)
II-o 2-(9+1)t-q+1
n00
3D0
7h+1
1
ΣΠ
II-, 2-(9+1)k-(q+1)t-q
+
h=0 k=1
It=0
II-, 2-(9+1)t-q/2-(6q+5)
II-0 2-(a+1)t-q +1
aq+2
N-(64+5)
1
0o 7h+1
1
ΣΠ
-(a+1)k-(q+1)t-q
+1
h=0 k=1
00 7h+1
II-, 2-(4+1)t-g
II-,2-(4+1)t-g/2-(6q+5)
+1
1
-ΣΠ
t=0
(4)
II-o Pa+1)k-(9+1)t-g +1
ag+2 = 0 =
=0
h=0 k=1
%3D0
Transcribed Image Text:In this work, we deal with the following nonlinear difference equation Im-(7g+6) 1+II-o Pm-(a+1)t-g 2-1, lo E (0, 0) is investigated. Sm+1 m = 0, 1, .., (1) t%3D0 where 2-(79+6), S2-(79+5), (d) We can generate the following formulas: L(79+7)n+r(q+1)+s+1 = (r-7)(4+1)+s+1 (1– (IIm=1 2-(mg+m-1)+s)/l(r-7)(g+1)+s+1 1+ (IIm=1 -D1 -(mg+m-1)+s) 7h+r 1 ΣΠ Ilm-1 P(a+1)t-(mg+m-1)+s + 1 h=0 k=1 =D1 (e) If S2(7g+7)n+(t-1)q+t → a(t-1)q+t 70 then 279+7)n+6q+7 → 0 as n → 0, If 2(79+7)n+tq+t → atg+t +0 then N(7g+7)n+79+7 + 0 as n → 0. t = 1,6. (e) Suppose that a1 = ag+2 = a2q+3 = a3q+4 = a4g+5 a5q+6 A6q+7 0. By (d), we produce the following formulas below: lim N(79+7)n+1 lim 2-(79+6) 1 II-o 2-(q+1)t-9 -(q+1)t-q +1 It%3D0 n 7h ΣΠ 1 LII TE 2(a+1)k-(q+1)t-q † h=0 k=1 Lt30 T, N-(9+1)t-q5?-114921I ,(a+1)k-(4+1)t-9 7h 1 =N-(79+6) 1 II-o 2-(9+1)t-g+1 +1 h=0 k=1 It=D0 7h II-o 2-(9+1)t-q+1 II-0 2-(a+1)t-9 1 EIIE g+1)k-(q+1)t-q ™ + aj = 0 > (3) = h=0 k=1 t%3D0 II-o 2-(4+1)t-q/2-(6q+5). 1 lim N(79+7)n+q+2= lim 2-(6q+5) II-o 2-(9+1)t-q+1 n00 3D0 7h+1 1 ΣΠ II-, 2-(9+1)k-(q+1)t-q + h=0 k=1 It=0 II-, 2-(9+1)t-q/2-(6q+5) II-0 2-(a+1)t-q +1 aq+2 N-(64+5) 1 0o 7h+1 1 ΣΠ -(a+1)k-(q+1)t-q +1 h=0 k=1 00 7h+1 II-, 2-(4+1)t-g II-,2-(4+1)t-g/2-(6q+5) +1 1 -ΣΠ t=0 (4) II-o Pa+1)k-(9+1)t-g +1 ag+2 = 0 = =0 h=0 k=1 %3D0
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,