0 > 0 soɔ 19. ta 0 = -3, sin 0 <0 = 0 ɔsɔ "9I 16. csc e = - V5, cos 6 <0 3. L > 0> 2 3 13. cos 0 =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question
13,19 plz
SECTION 7.6 Double-angle and Half-angle Formulas 507
concepts and Vocabulary
0soɔ = (07) s03
e soɔ - I
2
7. Multiple Choice Choose the expression that completes the
Half-angle Formula for cosine functions: cos-
2. sin
%3D
2.
1+ cos a
) so) - I
2.
cos a- sin a
e soɔ - I
+ (B)
3. tan 2
I (9)
2 tan 0
cos a
4. True or False tan (20)
I (3)
tan? 0
+ (P)
s True or False sin ( 20) has two equivalent forms:
D soɔ + I
8. Multiple Choice If sin a = ±
2 sin 0 cos 0
statement describes how 0 is related to a?
then which
6. True or False tan ( 20) + tan (20) = tan (40)
0 „soɔ - 0 „UỊS pun
Problems 9-20, use the information given about the angle 0,0 s 0 < 27, to find the exact value of:
సబ
0 = e (B)
30 (q)
Skill Building
0 = 0 (p) 07 = 0 ()
(a) sin (20)
(b) cos (20)
Cuis (2)
soɔ (p)
= e uis 6
5 *
3.
= e soɔ "0I
5.
,>0 >0
11. tan 0 =
3°
2
12. tan 0 =
2°
> e > 0
9A
3' 2
13. cos 0 = -
-> 0 > 4
> 0 > u
V3 37
14. sin 0 =
15. sec 0 = 3,
L > 0>-
sin 0 > 0
2
16. csc 0 = -V5, cos 0 < 0
<0 < 27
18. sec 0 = 2,
17. cot 0 -2,
0 > 0 ɔəs
0 > e uIS
In Problems 21-30, use Half-angle Formulas to find the exact value of each expression.
0 > 0 ɔsɔ
'c- = A uei "61
20. cot 0 = 3,
0 > e soɔ
\ 21. sin 22.5°
22. cos 22.5°
23. tan
8
157
24. tan
25. cos 165°
8
26. sin 195°
27. sec
8
29. sin
8
30. cos
In Problems 31–42, f(x) = sin x, g (x) = cos x, and h(x) = tan x. Use the figures below to evaluate each function.
31. f(20)
32. g(20)
33.
(x, 2)
x2 + y2 = 5
x2 + y2 = 1
34. f
35. h(20)
y *9E
ybb
37. 8(2a)
38. f(2a) n offT (a)
39.
40. g
41. h
42. h(2a)
()
btained as.t
43. Show that sin* 0 =
3
cos (20) +
cos (40).
44. Show that sin ( 40) = (cos 0) (4 sin 0 – 8 sin 0).
A 45. Show that sin? 0 cos 0
1.
1.
cos ( 40).
A 46. Show that sin* 0 cos“ 0 =
128
3.
cos (40) +
32
cos ( 80).
48. Find an expression for cos (46) as a fourth-degree polynomial
128
8.
in thn expression for cos (30) as a third-degree polynomial
the variable cos 0.
in the variable cos 0.
50. Find an expression for cos (50) as a fifth-degree polynomial
in the variable cos 0.
In the variable sin 0.
7.6 Assess Your Understanding
49. Find an expression for sin (50) as a fifth-degree polynomial
ాయ
parts fa) d
30
Transcribed Image Text:SECTION 7.6 Double-angle and Half-angle Formulas 507 concepts and Vocabulary 0soɔ = (07) s03 e soɔ - I 2 7. Multiple Choice Choose the expression that completes the Half-angle Formula for cosine functions: cos- 2. sin %3D 2. 1+ cos a ) so) - I 2. cos a- sin a e soɔ - I + (B) 3. tan 2 I (9) 2 tan 0 cos a 4. True or False tan (20) I (3) tan? 0 + (P) s True or False sin ( 20) has two equivalent forms: D soɔ + I 8. Multiple Choice If sin a = ± 2 sin 0 cos 0 statement describes how 0 is related to a? then which 6. True or False tan ( 20) + tan (20) = tan (40) 0 „soɔ - 0 „UỊS pun Problems 9-20, use the information given about the angle 0,0 s 0 < 27, to find the exact value of: సబ 0 = e (B) 30 (q) Skill Building 0 = 0 (p) 07 = 0 () (a) sin (20) (b) cos (20) Cuis (2) soɔ (p) = e uis 6 5 * 3. = e soɔ "0I 5. ,>0 >0 11. tan 0 = 3° 2 12. tan 0 = 2° > e > 0 9A 3' 2 13. cos 0 = - -> 0 > 4 > 0 > u V3 37 14. sin 0 = 15. sec 0 = 3, L > 0>- sin 0 > 0 2 16. csc 0 = -V5, cos 0 < 0 <0 < 27 18. sec 0 = 2, 17. cot 0 -2, 0 > 0 ɔəs 0 > e uIS In Problems 21-30, use Half-angle Formulas to find the exact value of each expression. 0 > 0 ɔsɔ 'c- = A uei "61 20. cot 0 = 3, 0 > e soɔ \ 21. sin 22.5° 22. cos 22.5° 23. tan 8 157 24. tan 25. cos 165° 8 26. sin 195° 27. sec 8 29. sin 8 30. cos In Problems 31–42, f(x) = sin x, g (x) = cos x, and h(x) = tan x. Use the figures below to evaluate each function. 31. f(20) 32. g(20) 33. (x, 2) x2 + y2 = 5 x2 + y2 = 1 34. f 35. h(20) y *9E ybb 37. 8(2a) 38. f(2a) n offT (a) 39. 40. g 41. h 42. h(2a) () btained as.t 43. Show that sin* 0 = 3 cos (20) + cos (40). 44. Show that sin ( 40) = (cos 0) (4 sin 0 – 8 sin 0). A 45. Show that sin? 0 cos 0 1. 1. cos ( 40). A 46. Show that sin* 0 cos“ 0 = 128 3. cos (40) + 32 cos ( 80). 48. Find an expression for cos (46) as a fourth-degree polynomial 128 8. in thn expression for cos (30) as a third-degree polynomial the variable cos 0. in the variable cos 0. 50. Find an expression for cos (50) as a fifth-degree polynomial in the variable cos 0. In the variable sin 0. 7.6 Assess Your Understanding 49. Find an expression for sin (50) as a fifth-degree polynomial ాయ parts fa) d 30
Expert Solution
Step 1

Part (13):- 

Given that cosθ = - 63,     π2<θ<π

 

steps

Step by step

Solved in 5 steps with 1 images

Blurred answer
Knowledge Booster
Algebraic Operations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,