0 -8 -4 -4 (a) The eigenvalues of A are λ = 3 and λ = -4. Find a basis for the eigenspace E3 of A associated to the eigenvalue λ = 3 and a basis of the eigenspace E-4 of A associated to the eigenvalue = -4. Let A = -4 0 1 0 0 3 3 0-4 000 BE3 A basis for the eigenspace E3 is = A basis for the eigenspace E-4 is

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
A basis for the eigenspace E-4 is
BE-47
(b) State the algebraic multiplicity and the geometric multiplicity of each
eigenvalue of A.
Algebraic multiplicity of λ = 3:
alg(3) =
Algebraic multiplicity of λ = -4:
alg(-4)=
Geometric multiplicity of λ = 3:
geo(3) =
(Hint: compute the characteristic polynomial C₁(2) of A.)
Geometric multiplicity of λ = -4:
geo(-4)=
(c) Is A diagonalizable? (No answer given)
(Make sure you know how to justify your answer.)
Transcribed Image Text:A basis for the eigenspace E-4 is BE-47 (b) State the algebraic multiplicity and the geometric multiplicity of each eigenvalue of A. Algebraic multiplicity of λ = 3: alg(3) = Algebraic multiplicity of λ = -4: alg(-4)= Geometric multiplicity of λ = 3: geo(3) = (Hint: compute the characteristic polynomial C₁(2) of A.) Geometric multiplicity of λ = -4: geo(-4)= (c) Is A diagonalizable? (No answer given) (Make sure you know how to justify your answer.)
Let A =
-4 0
1
0
0
3 3
0-4
000
0
-8
-4
-4
(a) The eigenvalues of A are λ = 3 and λ = -4. Find a basis for the
eigenspace E3 of A associated to the eigenvalue λ = 3 and a basis of the
eigenspace E-4 of A associated to the eigenvalue = -4.
A basis for the eigenspace E3 is
40
BE3 =
A basis for the eigenspace E-4 is
Transcribed Image Text:Let A = -4 0 1 0 0 3 3 0-4 000 0 -8 -4 -4 (a) The eigenvalues of A are λ = 3 and λ = -4. Find a basis for the eigenspace E3 of A associated to the eigenvalue λ = 3 and a basis of the eigenspace E-4 of A associated to the eigenvalue = -4. A basis for the eigenspace E3 is 40 BE3 = A basis for the eigenspace E-4 is
Expert Solution
steps

Step by step

Solved in 4 steps with 7 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,