0 1 1 1 0 Let A = 1 . Which of the following is true? 1 1 0 O A has two distinct eigenvalues. both with geometric multiplicity one. A is not diagonalizable. O A has two distinct real eigenvalues. One with geometric multiplicity one and the other with geometric multiplicity two. The matrix is diagonalizable. O A has three simple real eigenvalues and therefore it is diagonalizable. O A has one real eigenvalue. It is not diagonalizable.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
0.
1 1
Let A =
1
0 1
. Which of the following is true?
1
1 0
O A has two distinct eigenvalues. both with geometric multiplicity one. A
is not diagonalizable.
O A has two distinct real eigenvalues. One with geometric multiplicity one
and the other with geometric multiplicity two. The matrix is diagonalizable.
A has three simple real eigenvalues and therefore it is diagonalizable.
O A has one real eigenvalue. It is not diagonalizable.
Transcribed Image Text:0. 1 1 Let A = 1 0 1 . Which of the following is true? 1 1 0 O A has two distinct eigenvalues. both with geometric multiplicity one. A is not diagonalizable. O A has two distinct real eigenvalues. One with geometric multiplicity one and the other with geometric multiplicity two. The matrix is diagonalizable. A has three simple real eigenvalues and therefore it is diagonalizable. O A has one real eigenvalue. It is not diagonalizable.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Matrix Eigenvalues and Eigenvectors
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,