= 0 = 0 - = 0 2. 2y" - Зу' %3D 0 4. 2y" - 7у' + Зу %3D 0 6. у" + 5y' + 5у %3D 0 8. у" — бу' + 13у %3D 0 10. 5у(4) + 3у(3) — 0 = 0 6y" = 0 y" – y' = 0 4y' = 0 y = 0 4y = 0 14. у (4) + Зу" —- 4у 3D 0 16. у (4) + 18у"+ 81у %3D0 18. у(4) —D 16у %3D

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

need help please for # 15

### 3.3 Problems

**Find the general solutions of the differential equations in Problems 1 through 20.**

1. \( y'' - 4y = 0 \)
2. \( 2y'' - 3y' = 0 \)
3. \( y'' + 3y' - 10y = 0 \)
4. \( 2y'' - 7y' + 3y = 0 \)
5. \( y'' + 6y' + 9y = 0 \)
6. \( y'' + 5y' + 5y = 0 \)
7. \( 4y'' - 12y' + 9y = 0 \)
8. \( y'' - 6y' + 13y = 0 \)
9. \( y'' + 8y' + 25y = 0 \)
10. \( 5y^{(4)} + 3y^{(3)} = 0 \)
11. \( y^{(4)} - 8y^{(3)} + 16y'' = 0 \)
12. \( y^{(4)} - 3y^{(3)} + 3y'' - y' = 0 \)
13. \( 9y^{(3)} + 12y'' + 4y' = 0 \)
14. \( y^{(4)} + 3y'' - 4y = 0 \)
15. \( y^{(4)} - 8y'' + 16y = 0 \)
16. \( 4y^{(4)} + 18y''' + 81y = 0 \)
17. \( 6y^{(4)} + 11y'' + 4y = 0 \)
18. \( y^{(4)} = 16y \)
19. \( y^{(3)} + y'' - y' - y = 0 \)
20. \( y^{(4)} + 2y^{(3)} + 3y'' + 2y' + y = 0 \) (Suggestion: Expand \( (r^2 + r + 1)^2 \).)

**Solve the initial value problems given in Problems 21 through 26.**

21. \( y'' - 4y
Transcribed Image Text:### 3.3 Problems **Find the general solutions of the differential equations in Problems 1 through 20.** 1. \( y'' - 4y = 0 \) 2. \( 2y'' - 3y' = 0 \) 3. \( y'' + 3y' - 10y = 0 \) 4. \( 2y'' - 7y' + 3y = 0 \) 5. \( y'' + 6y' + 9y = 0 \) 6. \( y'' + 5y' + 5y = 0 \) 7. \( 4y'' - 12y' + 9y = 0 \) 8. \( y'' - 6y' + 13y = 0 \) 9. \( y'' + 8y' + 25y = 0 \) 10. \( 5y^{(4)} + 3y^{(3)} = 0 \) 11. \( y^{(4)} - 8y^{(3)} + 16y'' = 0 \) 12. \( y^{(4)} - 3y^{(3)} + 3y'' - y' = 0 \) 13. \( 9y^{(3)} + 12y'' + 4y' = 0 \) 14. \( y^{(4)} + 3y'' - 4y = 0 \) 15. \( y^{(4)} - 8y'' + 16y = 0 \) 16. \( 4y^{(4)} + 18y''' + 81y = 0 \) 17. \( 6y^{(4)} + 11y'' + 4y = 0 \) 18. \( y^{(4)} = 16y \) 19. \( y^{(3)} + y'' - y' - y = 0 \) 20. \( y^{(4)} + 2y^{(3)} + 3y'' + 2y' + y = 0 \) (Suggestion: Expand \( (r^2 + r + 1)^2 \).) **Solve the initial value problems given in Problems 21 through 26.** 21. \( y'' - 4y
Expert Solution
Step 1

Given differential equation has constant cofficient so We can solve by auxillary equation.

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Anova and Design of Experiments
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,