0 0 0 1 1 0 1 E =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Please answer number 5. 

**Problem 4**

Determine whether the following matrices are diagonalizable or not. Explain your answer.

1. \( A = \begin{bmatrix} 1 & 5 \\ 0 & 2 \end{bmatrix} \).

2. \( B = \begin{bmatrix} 2 & 2 \\ 0 & 2 \end{bmatrix} \).

3. \( C = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \).

4. \( D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix} \).

5. \( E = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \).
Transcribed Image Text:**Problem 4** Determine whether the following matrices are diagonalizable or not. Explain your answer. 1. \( A = \begin{bmatrix} 1 & 5 \\ 0 & 2 \end{bmatrix} \). 2. \( B = \begin{bmatrix} 2 & 2 \\ 0 & 2 \end{bmatrix} \). 3. \( C = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \). 4. \( D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix} \). 5. \( E = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \).
Expert Solution
Step 1

as you asking for only queston number 5, i solve for you that

 

Here E  = 
  0 0 1  
  0 1 0  
  1 0 0  





Find eigenvalues of the matrix A

|E-λI|=0

   (-λ)   0   1   
   0   (1-λ)   0   
   1   0   (-λ)   
 = 0



(-λ)((1-λ)×(-λ)-0×0)-0(0×(-λ)-0×1)+1(0×0-(1-λ)×1)=0

(-λ)((-λ+λ2)-0)-0(0-0)+1(0-(1-λ))=0

(-λ)(-λ+λ2)-0(0)+1(-1+λ)=0

(λ2-λ3)-0+(-1+λ)=0

(-λ3+λ2+λ-1)=0

-(λ-1)(λ-1)(λ+1)=0

(λ-1)=0or(λ-1)=0or(λ+1)=0

The eigenvalues of the matrix E are given by λ=-1,1,

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Types of Data and Their Measurement
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,