0 0 0 0 4. Suppose A, B, C E M3 (R) given by C = 1 3 -2 3 A = 5 4 3 -2 1 -6 3 A B = 4 4 AC = BC 0 1 B A = B C None of These Suppose -2 -1 A = 0-2 -192 16 3 -1 If it exists, find the inverse, A-1 inverse does not exist 912 F none of these 一1-1ー-1014 1 研

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Topic Video
Question

Need help wit h these 2 questions can have multiple Anwsers for each

## Matrix Equations and Inverses

### Example 1: Matrix Equality and Multiplication

#### Given Matrices
Suppose the matrices \(A, B, C \in M_3(\mathbb{R})\) are given by:
\[ 
A = \begin{pmatrix}
1 & 2 & 3 \\
0 & 5 & 4 \\
3 & -2 & 1 
\end{pmatrix}, \quad
B = \begin{pmatrix}
4 & -6 & 3 \\
5 & 4 & 4 \\
-1 & 0 & 1 
\end{pmatrix}, \quad
C = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
4 & -2 & 3 
\end{pmatrix}
\]

#### Question
Compare the matrices and choose the correct statement:
- \(A\)
- \(AC = BC\)
- \(A = B\)
- \( \text{None of These} \)

---

### Example 2: Finding the Inverse of a Matrix

#### Given Matrix
Suppose the matrix \(A\) is defined as:
\[
A = \begin{pmatrix}
-2 & -1 & -1 \\
0 & -2 & -192 \\
16 & 3 & -1 
\end{pmatrix}
\]

#### Question
If it exists, find the inverse, \(A^{-1}\):

\[
\text{Choices:}
\]

- \(A\)
\[
A = \begin{pmatrix}
\frac{1}{8} & \frac{1}{4} & -\frac{3}{8} \\
1 & \frac{7}{4} & -\frac{3}{4} \\
-\frac{3}{8} & -\frac{7}{4} & \frac{1}{4} 
\end{pmatrix}
\]

- \(B\)
\[
B = \begin{pmatrix}
1 & 2 & 0 \\
1 & 1 & \frac{1}{7} \\
-\frac{1}{7} & 1 & 0 
\end{pmatrix}
\]

- \(C\)
\[
C = \begin{pmatrix}
\frac{8
Transcribed Image Text:## Matrix Equations and Inverses ### Example 1: Matrix Equality and Multiplication #### Given Matrices Suppose the matrices \(A, B, C \in M_3(\mathbb{R})\) are given by: \[ A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 5 & 4 \\ 3 & -2 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & -6 & 3 \\ 5 & 4 & 4 \\ -1 & 0 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 4 & -2 & 3 \end{pmatrix} \] #### Question Compare the matrices and choose the correct statement: - \(A\) - \(AC = BC\) - \(A = B\) - \( \text{None of These} \) --- ### Example 2: Finding the Inverse of a Matrix #### Given Matrix Suppose the matrix \(A\) is defined as: \[ A = \begin{pmatrix} -2 & -1 & -1 \\ 0 & -2 & -192 \\ 16 & 3 & -1 \end{pmatrix} \] #### Question If it exists, find the inverse, \(A^{-1}\): \[ \text{Choices:} \] - \(A\) \[ A = \begin{pmatrix} \frac{1}{8} & \frac{1}{4} & -\frac{3}{8} \\ 1 & \frac{7}{4} & -\frac{3}{4} \\ -\frac{3}{8} & -\frac{7}{4} & \frac{1}{4} \end{pmatrix} \] - \(B\) \[ B = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & \frac{1}{7} \\ -\frac{1}{7} & 1 & 0 \end{pmatrix} \] - \(C\) \[ C = \begin{pmatrix} \frac{8
Expert Solution
steps

Step by step

Solved in 5 steps

Blurred answer
Knowledge Booster
Permutation and Combination
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education