.(1) t is straightforward to show that y = k-1 is a solution to the homog quation
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Explain thedetermine
![3.5.2
Example B
(1)
It is straightforward to show that y
equation
= k-1 is a solution to the homogeneous
2k + 1
k
Yk = 0.
- 1
(3.151)
Yk+2
Yk+1+
We will now use this to determine the general solution to the inhomogeneous
equation
2k + 1
k
Yk+1+
Yk
k
1
k(k + 1).
Yk+2
(3.152)
k
With the identification
k
Yk
Yk
Uk,
R: = k(k + 1),
(3.153)
k
equation (3.120) becomes
(k + 1)Auk+1 – kAuz = k(k + 1).
(3.154)
This equation has the solution
Auk = A/k + /3(k² – 1),
(3.155)
where A is an arbitrary constant. If we define
k-1
$(k)
(3.156)
IWI](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9396dbf6-1a2a-41f6-9ea8-33e71c92a8b7%2F47315492-1154-4197-96a2-1a7849e7ba57%2Feo35eza_processed.jpeg&w=3840&q=75)
Transcribed Image Text:3.5.2
Example B
(1)
It is straightforward to show that y
equation
= k-1 is a solution to the homogeneous
2k + 1
k
Yk = 0.
- 1
(3.151)
Yk+2
Yk+1+
We will now use this to determine the general solution to the inhomogeneous
equation
2k + 1
k
Yk+1+
Yk
k
1
k(k + 1).
Yk+2
(3.152)
k
With the identification
k
Yk
Yk
Uk,
R: = k(k + 1),
(3.153)
k
equation (3.120) becomes
(k + 1)Auk+1 – kAuz = k(k + 1).
(3.154)
This equation has the solution
Auk = A/k + /3(k² – 1),
(3.155)
where A is an arbitrary constant. If we define
k-1
$(k)
(3.156)
IWI
![(1)
(1)
Y+2(uk+2 – Uk+1) – qkY" (Uk+1 – Uk) = Rk,
(3.119)
or
(1)
.(1)
Yk+2Auk+1 – qkY'Auk
R.
(3.120)
Lot r.
Au: thoroforo](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9396dbf6-1a2a-41f6-9ea8-33e71c92a8b7%2F47315492-1154-4197-96a2-1a7849e7ba57%2Fotv4ovt_processed.jpeg&w=3840&q=75)
Transcribed Image Text:(1)
(1)
Y+2(uk+2 – Uk+1) – qkY" (Uk+1 – Uk) = Rk,
(3.119)
or
(1)
.(1)
Yk+2Auk+1 – qkY'Auk
R.
(3.120)
Lot r.
Au: thoroforo
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)