..LH.S.-R.H.S. - HW/ Prove that: (1) 1-tanh x=sech'x

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
icon
Concept explainers
Question
..LH.S.-R.H.S.
HW/ Prove that:
(1) 1-tantf x=sech²x
xsech'x
(2) coth? x-1=csch'x
%3D
(3) sinhc+y) = sinhx.coshyFcoshx:sinhy
(4) cosh(xF y) = cosh x.cosh y F sinh x.sinh y
(5) sinh 2x 2.sinhx.coshi
%3D
(6) cosh2x = cosh x+sinh x= 2.cosh“x-1 2.sinh x+1
%3!
(7) coshx + sinhx= e*
(8) cosh x-sinhx = e*
(9) cosh(-x) = cosh x..(even)
(10) sinh(-x) = - sinh x.....(odd)
tanh x+ tanh y
1+tanh x.tanh y
%3D
(11) tanh(x+y) =:
2. tanh x
(12) tanh(2x) =
%3D
1+tanh2 x
Transcribed Image Text:..LH.S.-R.H.S. HW/ Prove that: (1) 1-tantf x=sech²x xsech'x (2) coth? x-1=csch'x %3D (3) sinhc+y) = sinhx.coshyFcoshx:sinhy (4) cosh(xF y) = cosh x.cosh y F sinh x.sinh y (5) sinh 2x 2.sinhx.coshi %3D (6) cosh2x = cosh x+sinh x= 2.cosh“x-1 2.sinh x+1 %3! (7) coshx + sinhx= e* (8) cosh x-sinhx = e* (9) cosh(-x) = cosh x..(even) (10) sinh(-x) = - sinh x.....(odd) tanh x+ tanh y 1+tanh x.tanh y %3D (11) tanh(x+y) =: 2. tanh x (12) tanh(2x) = %3D 1+tanh2 x
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Application of Integration
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,