.. For one of these matrices, V = -2 is an eigenvector. Find the matrix with this eigenvector. [1 2 3] 1 b. A₂ = 3 2 1 3] [1 a. A₁ = 3 L2 2 3 2 1 1 2 2 31 2 1 L2 1 0 [1 c. A3 = 3 2 [1 d. A4 = 3 L2 2 1] 2 1 1 1.

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
**Problem Description:**

1. For one of these matrices, \( \vec{v} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \) is an eigenvector. Find the matrix with this eigenvector.

Matrices:

a. \( A_1 = \begin{bmatrix} 
1 & 2 & 3 \\ 
3 & 2 & 1 \\ 
2 & 1 & 2 
\end{bmatrix} \)

b. \( A_2 = \begin{bmatrix} 
1 & 2 & 3 \\ 
3 & 2 & 1 \\ 
2 & 1 & 0 
\end{bmatrix} \)

c. \( A_3 = \begin{bmatrix} 
1 & 2 & 3 \\ 
3 & 2 & 1 \\ 
2 & 1 & 3 
\end{bmatrix} \)

d. \( A_4 = \begin{bmatrix} 
1 & 2 & 1 \\ 
3 & 2 & 1 \\ 
2 & 1 & 1 
\end{bmatrix} \)

**Explanation:**

The given eigenvector \( \vec{v} \) is a vector that, when multiplied by the matrix \(A\), yields a scalar multiple of the same vector \( \vec{v} \). In mathematical terms, for a matrix \(A\) and an eigenvector \( \vec{v} \) with corresponding eigenvalue \(\lambda\),

\[ A \vec{v} = \lambda \vec{v} \]

The goal of this problem is to determine which of the provided matrices \(A_1\), \(A_2\), \(A_3\), or \(A_4\) has \( \vec{v} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \) as an eigenvector. This requires verifying that the multiplication of each matrix by the vector produces a result that is proportional to the original vector \( \vec{v} \).
Transcribed Image Text:**Problem Description:** 1. For one of these matrices, \( \vec{v} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \) is an eigenvector. Find the matrix with this eigenvector. Matrices: a. \( A_1 = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \) b. \( A_2 = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix} \) c. \( A_3 = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix} \) d. \( A_4 = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix} \) **Explanation:** The given eigenvector \( \vec{v} \) is a vector that, when multiplied by the matrix \(A\), yields a scalar multiple of the same vector \( \vec{v} \). In mathematical terms, for a matrix \(A\) and an eigenvector \( \vec{v} \) with corresponding eigenvalue \(\lambda\), \[ A \vec{v} = \lambda \vec{v} \] The goal of this problem is to determine which of the provided matrices \(A_1\), \(A_2\), \(A_3\), or \(A_4\) has \( \vec{v} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \) as an eigenvector. This requires verifying that the multiplication of each matrix by the vector produces a result that is proportional to the original vector \( \vec{v} \).
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education